如圖,設P是x2+y2=8上的動點,點D是點P在x軸上的投影,M點滿足MD=λPD(λ≠0).
(1)當點P在圓上運動時,求點M的軌跡C的方程;
(2)若λ=12,設點A(2,1),A關于原點的對稱點為B,直線l過點(1,-12)且與曲線C交于點M和點N,設直線AM與直線BN交于點T,設直線AM的斜率為k1,直線BN的斜率為k2.
(i)求證:k1k2為定值;
(ii)求證:存在兩條定直線l1、l2,使得點T到直線l1、l2的距離之積為定值.
MD
=
λ
PD
λ
=
1
2
-
1
2
k
1
k
2
【考點】直線與圓錐曲線的綜合;軌跡方程.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/10/13 4:0:1組卷:135難度:0.4
相似題
-
1.點P在以F1,F2為焦點的雙曲線
(a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O為坐標原點.E:x2a2-y2b2=1
(Ⅰ)求雙曲線的離心率e;
(Ⅱ)過點P作直線分別與雙曲線漸近線相交于P1,P2兩點,且,OP1?OP2=-274,求雙曲線E的方程;2PP1+PP2=0
(Ⅲ)若過點Q(m,0)(m為非零常數)的直線l與(2)中雙曲線E相交于不同于雙曲線頂點的兩點M、N,且(λ為非零常數),問在x軸上是否存在定點G,使MQ=λQN?若存在,求出所有這種定點G的坐標;若不存在,請說明理由.F1F2⊥(GM-λGN)發(fā)布:2024/12/29 10:0:1組卷:64難度:0.7 -
2.已知兩個定點坐標分別是F1(-3,0),F2(3,0),曲線C上一點任意一點到兩定點的距離之差的絕對值等于2
.5
(1)求曲線C的方程;
(2)過F1(-3,0)引一條傾斜角為45°的直線與曲線C相交于A、B兩點,求△ABF2的面積.發(fā)布:2024/12/29 10:30:1組卷:84引用:1難度:0.9 -
3.若過點(0,-1)的直線l與拋物線y2=2x有且只有一個交點,則這樣的直線有( )條.
發(fā)布:2024/12/29 10:30:1組卷:26引用:5難度:0.7
把好題分享給你的好友吧~~