在學(xué)習(xí)解一元二次方程以后,對(duì)于某些不是一元二次方程的方程,我們可通過(guò)變形將其轉(zhuǎn)化為一元二次方程來(lái)解.例如:解方程:x2-3|x|+2=0.
解:設(shè)|x|=y,則原方程可化為:y2-3y+2=0.
解得:y1=1,y2=2.
當(dāng)y=1時(shí),|x|=1,∴x=±1;
當(dāng)y=2時(shí),|x|=2,∴x=±2.
∴原方程的解是:x1=1,x2=-1,x3=2,x4=-2.
上述解方程的方法叫做“換元法”.請(qǐng)用“換元法”解決下列問(wèn)題:
(1)解方程:x4-10x2+9=0.
(2)若實(shí)數(shù)x滿足x2+1x2-3x-3x=2,求x+1x的值.
1
x
2
3
x
1
x
【考點(diǎn)】類比推理.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:31引用:1難度:0.8
相似題
-
1.已知
tan(x+π4)=1+tanx1-tanx,那么函數(shù)y=tanx的周期為π.類比可推出:已知x∈R且(x≠kπ+π4),那么函數(shù)y=f(x)的周期是( ?。?/h2>f(x+π)=1+f(x)1-f(x)發(fā)布:2025/1/6 8:0:1組卷:11引用:1難度:0.7 -
2.函數(shù)y=tanx滿足tan(x
)=+π4由該等式也能推證出y=tanx的周期為π,已知函數(shù)y=f(x)滿足f(x+a)=1+tanx1-tanx,x∈R.a(chǎn)為非零的常數(shù),根據(jù)上述論述我們可以類比出函數(shù)f(x)的周期為.1+f(x)1-f(x)發(fā)布:2025/1/6 8:0:1組卷:5引用:1難度:0.7 -
3.若
,x≠kπ+π4,則y=tanx的周期為π.類比可推出:設(shè)x∈R且tan(x+π4)=1+tanx1-tanx,則y=f(x)的周期是( ?。?/h2>f(x+π)=1+f(x)1-f(x)發(fā)布:2025/1/6 8:0:1組卷:36引用:1難度:0.5
把好題分享給你的好友吧~~