當(dāng)前位置:
2022-2023學(xué)年湖南省長(zhǎng)沙市雨花區(qū)雅禮實(shí)驗(yàn)中學(xué)九年級(jí)(上)暑假限時(shí)訓(xùn)練數(shù)學(xué)試卷>
試題詳情
在矩形ABCD中,AB=6,BC=8,E、F是對(duì)角線AC上的兩個(gè)動(dòng)點(diǎn),分別從A、C同時(shí)出發(fā)相向而行,速度均為每秒1個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為t秒,其中0≤t≤10.
(1)若G,H分別是AD,BC中點(diǎn),則四邊形EGFH一定是怎樣的四邊形(E、F相遇時(shí)除外)?
答:四邊形EGFH是平行四邊形四邊形EGFH是平行四邊形;(直接填空,不用說理)
(2)在(1)條件下,若四邊形EGFH為矩形,求t的值;
(3)在(1)條件下,若G向D點(diǎn)運(yùn)動(dòng),H向B點(diǎn)運(yùn)動(dòng),且與點(diǎn)E,F(xiàn)以相同的速度同時(shí)出發(fā),若四邊形EGFH為菱形,求t的值.
【考點(diǎn)】矩形的判定與性質(zhì);菱形的性質(zhì).
【答案】四邊形EGFH是平行四邊形
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:3853引用:22難度:0.4
相似題
-
1.如圖,在Rt△ABC中,∠BAC=90°,且BA=9,AC=12,點(diǎn)D是斜邊BC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)D分別作DE⊥AB于點(diǎn)E,DF⊥AC于點(diǎn)F,點(diǎn)G為四邊形DEAF對(duì)角線交點(diǎn),則線段GF的最小值為.
發(fā)布:2024/12/23 18:0:1組卷:2668引用:10難度:0.5 -
2.D是△ABC的邊AB上的一點(diǎn),E是邊BC邊的中點(diǎn),過點(diǎn)C作AB的平行線,交DE的延長(zhǎng)線于點(diǎn)F,連接CD、BF.
(1)求證:四邊形BDCF是平行四邊形.
(2)已知AC=6,BC=8,AB=10,請(qǐng)?zhí)羁眨?br />①當(dāng)AD=時(shí),四邊形CDBF是矩形;
②當(dāng)AD=時(shí),四邊形CDBF是菱形.發(fā)布:2024/12/23 14:0:1組卷:193引用:4難度:0.5 -
3.如圖,在△ABC中,AC=6,AB=8,BC=10,D為BC邊上一動(dòng)點(diǎn),DE⊥AB于點(diǎn)E,DF⊥AC于點(diǎn)F.
(1)求證:四邊形AEDF是矩形;
(2)在點(diǎn)D運(yùn)動(dòng)的過程中,EF的長(zhǎng)度是否存在最小值?若存在,請(qǐng)求出最小值,若不存在,請(qǐng)說明理由.發(fā)布:2024/12/23 15:30:2組卷:72引用:2難度:0.5