將一矩形紙片OABC放在平面直角坐標系中,O(0,0),A(6,0),C(0,3).動點Q從點O出發(fā)以每秒1個單位長的速度沿OC向終點C運動,運動23秒時,動點P從點A出發(fā)以相等的速度沿AO向終點O運動.當其中一點到達終點時,另一點也停止運動.設點P的運動時間為t(秒).
(1)用含t的代數(shù)式表示OP,OQ;
(2)當t=1時,如圖1,將沿△OPQ沿PQ翻折,點O恰好落在CB邊上的點D處,求點D的坐標;
(3)連接AC,將△OPQ沿PQ翻折,得到△EPQ,如圖2.問:PQ與AC能否平行?PE與AC能否垂直?若能,求出相應的t值;若不能,說明理由.
2
3
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:947引用:25難度:0.1
相似題
-
1.如圖,在△ABC中,∠ACB=90°,若把△ABC沿直線DE折疊,使△ADE與△BDE重合.
(1)當∠A=35°時,求∠CBD的度數(shù).
(2)若AC=4,BC=3,求AD的長.
(3)當AB=m(m>0),△ABC 的面積為m+1時,求△BCD的周長.(用含m的代數(shù)式表示)發(fā)布:2025/1/24 8:0:2組卷:396引用:4難度:0.5 -
2.如圖,△ABC中,∠B=55°,D、E分別在AB、AC上,且DE∥BC,將△ABC沿線段DE折疊,使點A落在點F處,則∠BDF=
發(fā)布:2025/1/20 8:0:1組卷:70引用:1難度:0.7 -
3.如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3,點D是BC邊上的一動點(不與點B、C重合),過點D作DE⊥BC交AB于點E,將∠B沿直線DE翻折,點B落在射線BC上的點F處.當△AEF為直角三角形時,則折疊后所得到的四邊形AEDF的周長為.
發(fā)布:2025/1/28 8:0:2組卷:447引用:3難度:0.5