(1)閱讀理解:

如圖1,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.
解決此問題可以用如下方法:延長AD到點E使DE=AD,再連接BE(或?qū)ⅰ鰽CD繞著點D逆時針旋轉(zhuǎn)180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形三邊的關(guān)系即可判斷.中線AD的取值范圍是 2<AD<82<AD<8;
(2)問題解決:
如圖2,在△ABC中,D是BC邊上的中點,DE⊥DF于點D,DE交AB于點E,DF交AC于點F,連接EF,求證:BE+CF>EF;
(3)問題拓展:
如圖3,在四邊形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C為頂點作一個70°角,角的兩邊分別交AB,AD于E,F(xiàn)兩點,連接EF,探索線段BE,DF,EF之間的數(shù)量關(guān)系,并加以證明.
【考點】四邊形綜合題.
【答案】2<AD<8
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/28 18:0:2組卷:338引用:5難度:0.1
相似題
-
1.綜合與實踐
問題情境:在數(shù)學(xué)活動課上,老師讓同學(xué)們以“矩形的折疊”為主題開展數(shù)學(xué)活動如圖,矩形紙片ABCD中,點M、N分別是AD、BC的中點,點E、F分別在AB、CD上,且AE=CF.
動手操作:將△AEM沿EM折疊,點A的對應(yīng)點為點P,將△NCF沿NF折疊,點C的對應(yīng)點為點Q,點P、Q均落在矩形ABCD的內(nèi)部,連接PN、QM.
問題解決:(1)判斷四邊形PNQM的形狀,并證明;
(2)當(dāng)AD=2AB=4,四邊形PNQM為菱形時,求AE的長.發(fā)布:2025/5/24 11:30:1組卷:112引用:2難度:0.3 -
2.【問題情境】
(1)如圖1,在正方形ABCD中,E,F(xiàn),G分別是BC,AB,CD上的點,F(xiàn)G⊥AE于點Q.求證:AE=FG.
【嘗試應(yīng)用】
(2)如圖2,正方形網(wǎng)格中,點A,B,C,D為格點,AB交CD于點O.求tan∠AOC的值.
【拓展提升】
(3)如圖3,點P是線段AB上的動點,分別以AP,BP為邊在AB的同側(cè)作正方形APCD與正方形PBEF,連接DE分別交BC、PC、AC于點M、N、H,求的值.S△ADHS△ABC發(fā)布:2025/5/24 13:0:1組卷:430引用:1難度:0.3 -
3.在四邊形ABCD中,AB=BC,∠B=60°;
(1)如圖1,已知,∠D=30°求得∠A+∠C的大小為.
(2)已知AD=3,CD=4,在(1)的條件下,利用圖1,連接BD,并求出BD的長度;
(3)問題解決;如圖2,已知∠D=75°,BD=6,現(xiàn)需要截取某種四邊形的材料板,這個材料板的形狀恰巧符合如圖2所示的四邊形,為了盡可能節(jié)約,你能求出這種四邊形面積的最小值嗎?如果能,請求出此時四邊形ABCD面積的最小值;如果不能,請說明理由.發(fā)布:2025/5/24 12:0:1組卷:527引用:3難度:0.1