試卷征集
加入會員
操作視頻

對于一個四位數n,將這個四位數n千位上的數字與十位上的數字對調,百位上的數字與個位上的數字對調后可以得到一個新的四位數n′,將交換后的數與原數求和后再除以101,所得的商稱為原數的“一心一意數”,記作F(n)=
n
+
n
101
,如n=5678,對調數字后得n′=7856,所以F(n)=
5678
+
7856
101
=134.
(1)直接寫出F(2021)=
41
41
;
(2)求證:對于任意一個四位數n,F(n)均為整數;
(3)若s=3800+10a+b,t=1000b+100a+13(1≤a≤5,5≤b≤9,a、b均為整數),當3F(t)-F(s)的值能被8整除時,求滿足條件的s的所有值.

【考點】因式分解的應用
【答案】41
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:489難度:0.2
相似題
  • 1.閱讀下列題目的解題過程:
    已知a、b、c為△ABC的三邊長,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
    解:∵a2c2-b2c2=a4-b4(A)
    ∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
    ∴c2=a2+b2(C)
    ∴△ABC是直角三角形
    問:(1)上述解題過程,從哪一步開始出現錯誤?請寫出該步的代號:
    ;
    (2)錯誤的原因為:
    ;
    (3)本題正確的結論為:

    發(fā)布:2024/12/23 18:0:1組卷:2511引用:25難度:0.6
  • 2.若a是整數,則a2+a一定能被下列哪個數整除( ?。?/h2>

    發(fā)布:2024/12/24 6:30:3組卷:386引用:7難度:0.6
  • 3.閱讀理解:
    能被7(或11或13)整除的特征:如果一個自然數末三位所表示的數與末三位以前的數字所表示的數之差(大數減小數)是7(或11或13)的倍數,則這個數就能被7(或11或13)整除.
    如:456533,533-456=77,77是7的11倍,所以,456533能被7整除.又如:345548214,345548-214=345334,345-334=11,11是11的1倍,所以,345548214能被11整除.
    (1)用材料中的方法驗證67822615是7的倍數(寫明驗證過程);
    (2)若對任意一個七位數,末三位所表示的數與末三位以前的數字所表示的數之差(大數減小數)是11的倍數,證明這個七位數一定能被11整除.

    發(fā)布:2025/1/5 8:0:1組卷:122難度:0.4
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正