當(dāng)前位置:
試題詳情
定義函數(shù)f(x)=cos(sinx)為“正余弦”函數(shù).結(jié)合學(xué)過的相關(guān)知識,我們可以得到該函數(shù)的性質(zhì):
1.我們知道,正弦函數(shù)y=sinx和余弦函數(shù)y=cosx的定義域均為R,故函數(shù)f(x)=cos(sinx)的定義域?yàn)镽.
2.我們知道,正弦函數(shù)y=sinx為奇函數(shù),余弦函數(shù)y=cosx為偶函數(shù),對f(x)=cos(sinx),f(-x)=cos[sin(-x)]=cos(-sinx)=cos(sinx)=f(x),可得:函數(shù)f(x)=cos(sinx)為偶函數(shù).
3.我們知道,正弦函數(shù)y=sinx和余弦函數(shù)y=cosx的最小正周期均為2π,對f(x)=cos(sinx),f(x+2π)=cos[sin(x+2π)]=cos(sinx)=f(x),可知2π為該函數(shù)的周期,是否是最小正周期呢?我們繼續(xù)探究:f(x+π)=cos[sin(x+π)]=cos(-sinx)=cos(sinx)=f(x).
可得:π也為函數(shù)f(x)=cos(sinx)的周期.但是否為該函數(shù)的最小正周期呢?我們來研究f(x)=cos(sinx)在區(qū)間[0,π]上的單調(diào)性,在區(qū)間[0,π]上,余弦函數(shù)y=cosx單調(diào)遞減,正弦函數(shù)y=sinx在[0,π2]上單調(diào)遞增,在(π2,π]上單調(diào)遞減,故我們需要分這兩個(gè)區(qū)間來討論.
當(dāng)x∈[0,π2]時(shí),設(shè)0≤x1<x2≤π2,因正弦函數(shù)y=sinx在[0,π2]上單調(diào)遞增,故sinx1<sinx2,令t1=sinx1,t2=sinx2,可得0≤t1<t2≤1<π,而在區(qū)間[0,π]上,余弦函數(shù)y=cosx單調(diào)遞減,故:cost1>cost2即:cos(sinx1)>cos(sinx2)從而,x∈[0,π2]時(shí),函數(shù)f(x)=cos(sinx)單調(diào)遞減.
同理可證,x∈(π2,π]時(shí),函數(shù)f(x)=cos(sinx)單調(diào)遞增.可得,函數(shù)f(x)=cos(sinx)在[0,π2]上單調(diào)遞減,在(π2,π]上單調(diào)遞增.結(jié)合f(x+π)=f(x).
可以確定:f(x)=cos(sinx)的最小正周期為π.
這樣,我們可以求出該函數(shù)的值域了:
顯然:f(x)min=f(π2)=cos(sinπ2)=cos1,而f(0)=1=f(π)
故f(x)=cos(sinx)的值域?yàn)閇cos1,1]
定義函數(shù)f(x)=sin(cosx)為“余正弦”函數(shù),根據(jù)閱讀材料的內(nèi)容,解決下列問題:
(1)求該函數(shù)的定義域;
(2)判斷該函數(shù)的奇偶性;
(3)探究該函數(shù)的單調(diào)性及最小正周期,并求其值域.
[
0
,
π
2
]
(
π
2
,
π
]
x
∈
[
0
,
π
2
]
0
≤
x
1
<
x
2
≤
π
2
[
0
,
π
2
]
x
∈
[
0
,
π
2
]
x
∈
(
π
2
,
π
]
[
0
,
π
2
]
(
π
2
,
π
]
f
(
x
)
min
=
f
(
π
2
)
=
cos
(
sin
π
2
)
=
cos
1
【考點(diǎn)】正弦函數(shù)的單調(diào)性;三角函數(shù)的周期性.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/11/11 8:0:1組卷:80引用:1難度:0.5
相似題
-
1.我國著名數(shù)學(xué)家華羅庚先生曾說:數(shù)缺形時(shí)少直觀,形缺數(shù)時(shí)難入微,數(shù)形結(jié)合百般好,隔裂分家萬事休,在數(shù)學(xué)的學(xué)習(xí)和研究中,函數(shù)的解析式常用來研究函數(shù)圖象的特征,兩數(shù)
的圖象大致為( ?。?/h2>f(x)=12x-sinx發(fā)布:2024/12/29 13:0:1組卷:176引用:3難度:0.9 -
2.已知f(x)=sin(ωx+φ)(ω>0)滿足
,f(π4)=1且f(x)在f(53π)=0上單調(diào),則ω的最大值為( ?。?/h2>(π4,5π6)發(fā)布:2024/12/29 11:30:2組卷:971引用:9難度:0.7 -
3.已知函數(shù)
(ω>0)的最小正周期T=π,下列說法正確的是( ?。?/h2>f(x)=2sin(ωx-π3)發(fā)布:2024/12/29 12:30:1組卷:619引用:3難度:0.7
把好題分享給你的好友吧~~