【模型】如圖1,已知△BAD和△BCE均為等腰直角三角形,∠BAD=∠BCE=90°,點M為DE的中點.過點E與AD平行的直線交射線AM于點N,則點M為AN的中點.

【拓展】
(1)如圖2,將圖1中△BCE繞點B旋轉(zhuǎn),當A,B,E三點在同一直線上時,求證:△CAN為等腰直角三角形.
【遷移】
(2)如圖3,將圖1中△BCE繞點B旋轉(zhuǎn),當A,B,E三點不在同一直線上時,(2)中的結(jié)論是否仍然成立?若成立,請證明;若不成立,請說明理由.
【考點】幾何變換綜合題.
【答案】(1)見解析;
(2)成立,證明見解析.
(2)成立,證明見解析.
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/7/2 8:0:9組卷:35引用:2難度:0.2
相似題
-
1.如圖1,四邊形ABCD中,∠BCD=90°,AC=AD,AF⊥CD于點F,交BD于點E,∠ABD=2∠BDC.
(1)判斷線段AE與BC的關(guān)系,并說明理由;
(2)若∠BDC=30°,求∠ACD的度數(shù);
(3)如圖2,在(2)的條件下,線段BD與AC交于點O,點G是△BCE內(nèi)一點,∠CGE=90°,GE=3,將△CGE繞著點C逆時針旋轉(zhuǎn)60°得△CMH,E點對應點為M,G點的對應點為H,且點O,G,H在一條直線上直接寫出OG+OH的值.發(fā)布:2025/5/22 19:0:1組卷:524引用:1難度:0.2 -
2.如圖,四邊形ABCD是矩形紙片,AB=2.對折矩形紙片ABCD,使AD與BC重合,折痕為EF;展平后再過點B折疊矩形紙片,使點A落在EF上的點N,折痕BM與EF相交于點Q;再次展平,連接BN,MN,延長MN交BC于點G.有如下結(jié)論:
①∠ABN=60°;②AM=1;③QN=;④△BMG是等邊三角形;⑤P為線段BM上一動點,H是BN的中點,則PN+PH的最小值是33.3
其中正確結(jié)論的序號是.發(fā)布:2025/5/23 1:30:2組卷:3126引用:15難度:0.5 -
3.在△ABC中,AB=AC,∠BAC=α,點P為線段CA延長線上一動點,連接PB,將線段PB繞點P逆時針旋轉(zhuǎn),旋轉(zhuǎn)角為α,得到線段PD,連接DB,DC.
(1)如圖1,當α=60°時,
①求證:PA=DC;
②求∠DCP的度數(shù);
(2)如圖2,當α=120°時,請直接寫出PA和DC的數(shù)量關(guān)系.
(3)當α=120°時,若AB=6,BP=,請直接寫出點D到CP的距離為.31發(fā)布:2025/5/23 4:0:1組卷:4734引用:13難度:0.1
相關(guān)試卷