設(shè)x,y均為正實(shí)數(shù),且32+x+32+y=1,則x+y+4的最小值為( ?。?/h1>
3
2
+
x
+
3
2
+
y
=
1
【考點(diǎn)】基本不等式及其應(yīng)用.
【答案】A
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/27 14:0:0組卷:110引用:1難度:0.8
相似題
-
1.已知x、y、z是互不相等的正數(shù),則在x(1-y)、y(1-z)、z(1-x)三個(gè)值中,大于
的個(gè)數(shù)的最大值是( )14A.0 B.1 C.2 D.3 發(fā)布:2024/12/30 19:30:5組卷:87引用:2難度:0.6 -
2.若x≥y,則下列不等式中正確的是( ?。?/h2>
A.2-x≥2-y B. x+y2≥xyC.x2≥y2 D.x2+y2≥2xy 發(fā)布:2025/1/5 19:30:5組卷:155引用:3難度:0.7 -
3.已知正實(shí)數(shù)a,b滿足ab+2a-2=0,則4a+b的最小值是( ?。?/h2>
A.2 B. 42-2C. 43-2D.6 發(fā)布:2024/12/29 1:30:1組卷:631引用:3難度:0.8
把好題分享給你的好友吧~~