問題背景:如圖1,在等腰△ABC中,AB=AC,AD⊥BC,垂足為點D,在△AEF中,∠AEF=90°,∠EAF=12∠BAC,連接BF,M是BF中點,連接EM和DM,在△AEF繞點A旋轉(zhuǎn)過程中,線段EM和DM之間存在怎樣的數(shù)量關(guān)系?

觀察發(fā)現(xiàn):
(1)為了探究線段EM和DM之間的數(shù)量關(guān)系,可先將圖形位置特殊化,將△AEF繞點A旋轉(zhuǎn),使AE與AB重合,如圖2,易知EM和DM之間的數(shù)量關(guān)系為 EM=DMEM=DM;
操作證明:
(2)繼續(xù)將△AEF繞點A旋轉(zhuǎn),使AE與AD重合時,如圖3,(1)中線段EM和DM之間的數(shù)量關(guān)系仍然成立,請加以證明.
問題解決:
(3)根據(jù)上述探究的經(jīng)驗,我們回到一般情況,如圖1,在其他條件不變的情況下,上述的結(jié)論還成立嗎?請說明你的理由.
∠
EAF
=
1
2
∠
BAC
【考點】幾何變換綜合題.
【答案】EM=DM
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2025/5/22 6:30:1組卷:219引用:2難度:0.1
相似題
-
1.如圖,△ABC中,∠ACB=90°,AC=BC,點D在AB的延長線上.
(1)如圖1,若CD=AB,求出∠DCB的度數(shù);
(2)如圖2,以DC為腰在上方作等腰直角三角形,∠DCE=90°,EC=DC,點F是DE的中點,過點F作FG⊥BD于G,求證:GD+BC=2FG;2
(3)當∠BCD=30°時,仍按(2)的方式作等腰直角三角形DCE和FG,把△DGF沿AD翻折到平面內(nèi),點F的對應點為F′,若BG=1,請求出EF′的長.發(fā)布:2025/5/22 9:0:1組卷:418引用:1難度:0.2 -
2.綜合與實踐:
在綜合與實踐課上,老師讓同學們以“矩形紙片的折疊”為主題開展數(shù)學活動.
在矩形ABCD中,E為AB邊上一點,F(xiàn)為AD邊上一點,連接CE、CF,分別將△BCE和△CDF沿CE、CF翻折,點D、B的對應點分別為點G、H,且C、H、G三點共線.
(1)如圖1,若F為AD邊的中點,AB=BC=6,點G與點H重合,則∠ECF=°,BE=;
(2)如圖2,若F為AD的中點,CG平分∠ECF,,BC=2,求∠ECF的度數(shù)及BE的長.AB=2+1
(3)AB=5,AD=3,若F為AD的三等分點,請直接寫出BE的長.發(fā)布:2025/5/22 5:30:2組卷:902引用:5難度:0.4 -
3.如圖,在△ABC中,AB=AC,∠BAC=90°,D為線段BC上一點,連接AD,將線段AD繞點A逆時針旋轉(zhuǎn)90°得到線段AE,作射線CE.
(1)求證:△BAD≌△CAE,并求∠BCE的度數(shù);
(2)若F為DE中點,連接AF,連接CF并延長,交射線BA于點G.當BD=2,DC=1時,
①求AF的長;
②直接寫出CG的長.發(fā)布:2025/5/22 4:30:1組卷:516引用:4難度:0.5
相關(guān)試卷