已知,如圖,拋物線y=ax2+2ax+c與y軸負(fù)半軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)B的坐標(biāo)為(1,0),OC=3OB.

(1)求拋物線的解析式;
(2)若點(diǎn)D是第三象限拋物線上的動點(diǎn),當(dāng)四邊形ABCD面積最大時,求出此時面積的最大值和點(diǎn)D的坐標(biāo).
(3)將拋物線y=ax2+2ax+c向右平移2個單位,平移后的拋物線與原拋物線相交于點(diǎn)M,N在原拋物線的對稱軸上,H為平移后的拋物線上一點(diǎn),當(dāng)以A、M、H、N為頂點(diǎn)的四邊形是平行四邊形時,直接寫出點(diǎn)H的坐標(biāo).
【考點(diǎn)】二次函數(shù)綜合題.
【答案】(1)y=x2+2x-3;
(2)最大值,點(diǎn);
(3)(2,-3)或(-2,5)或(-4,21).
(2)最大值
75
8
D
(
-
3
2
,-
15
4
)
(3)(2,-3)或(-2,5)或(-4,21).
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:590引用:4難度:0.3
相似題
-
1.如圖,已知拋物線l:y=-x2+2x+3與x軸交于點(diǎn)A,點(diǎn)B(A在B的左側(cè)),與y軸交于點(diǎn)C.l'是l關(guān)于x軸對稱的拋物線.
(1)求拋物線l'的解析式;
(2)拋物線l'與y軸交于點(diǎn)D,點(diǎn)P是拋物線l'的一個動點(diǎn),過點(diǎn)P作x軸的垂線交BD所在的直線于點(diǎn)M.當(dāng)以C,D,M,P為頂點(diǎn)的四邊形是平行四邊形時,求點(diǎn)M的坐標(biāo).發(fā)布:2025/5/24 6:30:2組卷:406引用:1難度:0.3 -
2.如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),連接BC.P是直線BC上方拋物線上一動點(diǎn),連接PA,交BC于點(diǎn)D.其中BC=AB,tan∠ABC=
.34
(1)求拋物線的解析式;
(2)求的最大值;PDDA
(3)若函數(shù)y=ax2+bx+3在(其中m-12≤x≤m+12)范圍內(nèi)的最大值為s,最小值為t,且m≤56≤s-t<12,求m的取值范圍.32發(fā)布:2025/5/24 6:0:2組卷:213引用:1難度:0.1 -
3.如圖,在平面直角坐標(biāo)系中,拋物線y=x2+bx+c經(jīng)過點(diǎn)A(-1,0),B(
,0),直線y=x+52與拋物線交于C,D兩點(diǎn),點(diǎn)P是拋物線在第四象限內(nèi)圖象上的一個動點(diǎn).過點(diǎn)P作PG⊥CD,垂足為G,PQ∥y軸,交x軸于點(diǎn)Q.12
(1)求拋物線的函數(shù)表達(dá)式;
(2)當(dāng)PG+PQ取得最大值時,求點(diǎn)P的坐標(biāo)和2PG+PQ的最大值;2
(3)將拋物線向右平移個單位得到新拋物線,M為新拋物線對稱軸上的一點(diǎn),點(diǎn)N是平面內(nèi)一點(diǎn).當(dāng)(2)中134PG+PQ最大時,直接寫出所有使得以點(diǎn)A,P,M,N為頂點(diǎn)的四邊形是菱形的點(diǎn)N的坐標(biāo),并把求其中一個點(diǎn)N的坐標(biāo)的過程寫出來.2發(fā)布:2025/5/24 5:0:1組卷:1766引用:4難度:0.3