古希臘數(shù)學家阿波羅尼奧斯的著作《圓錐曲線論》中有這樣一個命題:平面內與兩定點的距離的比為常數(shù)k(k>0)的點的軌跡為圓,后人將這個圓稱為阿波羅尼斯圓,已知O(0,0),A(3,0),圓C:(x-2)2+y2=r2(r>0)上有且只有一個點P滿足|PA|=2|PO|.則r的取值可以是( )
【考點】軌跡方程.
【答案】C
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/5/27 14:0:0組卷:40引用:3難度:0.5
相似題
-
1.點P為△ABC所在平面內的動點,滿足
=t(AP),t∈(0,+∞),則點P的軌跡通過△ABC的( ?。?/h2>AB|AB|cosB+AC|AC|cosC發(fā)布:2024/12/29 6:30:1組卷:100引用:3難度:0.7 -
2.已知四棱錐P-ABCD的底面ABCD為正方形,PD⊥底面ABCD,且PD=AD=4,點E為BC的中點.四棱錐P-ABCD的所有頂點都在同一個球面上,點M是該球面上的一動點,且PM⊥AE,則點M的軌跡的長度為( )
發(fā)布:2024/12/29 8:0:12組卷:14引用:1難度:0.6 -
3.已知兩個定點A(-2,0),B(1,0),如果動點P滿足|PA|=2|PB|.
(1)求點P的軌跡方程并說明該軌跡是什么圖形;
(2)若直線l:y=kx+1分別與點P的軌跡和圓(x+2)2+(y-4)2=4都有公共點,求實數(shù)k的取值范圍.發(fā)布:2024/12/29 10:30:1組卷:39引用:3難度:0.5
把好題分享給你的好友吧~~