【發(fā)現(xiàn)問題】

“速疊杯”是深受學(xué)生喜愛的一項(xiàng)運(yùn)動,杯子的疊放方式如圖1所示:每層都是杯口朝下排成一行,自下向上逐層遞減一個杯子,直至頂層只有一個杯子.愛思考的小麗發(fā)現(xiàn)疊放所需杯子的總數(shù)隨著第一層(最底層)杯子的個數(shù)變化而變化.
【提出問題】
疊放所需杯子的總數(shù)y與第一層杯子的個數(shù)x之間有怎樣的函數(shù)關(guān)系?
【分析問題】
小麗結(jié)合實(shí)際操作和計(jì)算得到下表所示的數(shù)據(jù):
第一層杯子的個數(shù)x | 1 | 2 | 3 | 4 | 5 | … |
杯子的總數(shù)y | 1 | 3 | 6 | 10 | 15 | … |
【解決問題】
(1)直接寫出y與x的關(guān)系式;
(2)現(xiàn)有36個杯子,按【發(fā)現(xiàn)問題】中的方式疊放,求第一層杯子的個數(shù);
(3)杯子的側(cè)面展開圖如圖4所示,ND,MA分別為上、下底面圓的半徑,
?
AB
【考點(diǎn)】二次函數(shù)綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/25 0:0:1組卷:933引用:4難度:0.4
相似題
-
1.如圖,拋物線y=-x2+bx+5與x軸交于A,B兩點(diǎn).
(1)若過點(diǎn)C的直線x=2是拋物線的對稱軸.
①求拋物線的解析式;
②對稱軸上是否存在一點(diǎn)P,使點(diǎn)B關(guān)于直線OP的對稱點(diǎn)B'恰好落在對稱軸上.若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
(2)當(dāng)b≥4,0≤x≤2時,函數(shù)值y的最大值滿足3≤y≤15,求b的取值范圍.發(fā)布:2025/6/22 2:30:1組卷:2257引用:18難度:0.6 -
2.在平面直角坐標(biāo)系xOy中,拋物線y=ax2+
x+c與y軸交于點(diǎn)C,與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),其中A(-233,0),tan∠ACO=3.33
(1)求拋物線的解析式;
(2)如圖1,點(diǎn)D為直線BC上方拋物線上一點(diǎn),連接AD、BC交于點(diǎn)E,連接BD,記△BDE的面積為S1,△ABE的面積為S2,求的最大值;S1S2
(3)如圖2,將拋物線沿射線CB方向平移,點(diǎn)C平移至C′處,且OC′=OC,動點(diǎn)M在平移后拋物線的對稱軸上,當(dāng)△C′BM為以C′B為腰的等腰三角形時,請直接寫出點(diǎn)M的坐標(biāo).發(fā)布:2025/6/22 1:0:1組卷:1858引用:4難度:0.1 -
3.在平面直角坐標(biāo)系xOy中,拋物線y=ax2-4ax+c(a≠0)與y軸交于點(diǎn)A,將點(diǎn)A向右平移2個單位長度,得到點(diǎn)B.直線y=
x-3與x軸,y軸分別交于點(diǎn)C,D.35
(1)求拋物線的對稱軸;
(2)若點(diǎn)A與點(diǎn)D關(guān)于x軸對稱,
①求點(diǎn)B的坐標(biāo);
②若拋物線與線段BC恰有一個公共點(diǎn),結(jié)合函數(shù)圖象,求a的取值范圍.發(fā)布:2025/6/22 2:0:1組卷:1146引用:10難度:0.4
相關(guān)試卷