問題:正數(shù)a,b滿足a+b=1,求1a+2b的最小值.其中一種解法是:1a+2b=(1a+2b)(a+b)=1+ba+2ab+2≥3+22,當(dāng)且僅當(dāng)ba=2ab,且a+b=1時,即a=2-1且b=2-2時取等號,學(xué)習(xí)上述解法并解決下列問題:
(1)若正實數(shù)x,y滿足xy=3x+y,求x+y的最小值;
(2)若正實數(shù)a,b,x,y滿足x2a2-y2b2=1,且a>b,試比較a2-b2和(x-y)2的大小,并說明理由;
(3)若m>0,利用(2)的結(jié)論,求代數(shù)式M=3m-5-m-2的最小值,并求出使得M最小的m的值.
1
a
+
2
b
1
a
+
2
b
=
(
1
a
+
2
b
)
(
a
+
b
)
=
1
+
b
a
+
2
a
b
+
2
≥
3
+
2
2
b
a
=
2
a
b
2
2
x
2
a
2
-
y
2
b
2
3
m
-
5
-
m
-
2
【考點】運用基本不等式求最值.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:265引用:12難度:0.6
相似題
-
1.(1)若x>0,求函數(shù)
的最小值,并求此時x的值;y=x+4x
(2)已知a,b∈(0,+∞),比較與a+b的大?。?/h2>a2b+b2a發(fā)布:2024/4/20 14:35:0組卷:328引用:4難度:0.7
把好題分享給你的好友吧~~