如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=-1,且拋物線經過A(1,0),C(0,3)兩點,與x軸交于點B.
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上找一點M,使點M到點A的距離與到點C的距離之和最小,求出點M的坐標及此時距離之和的最小值;
(3)如果點P(x1,n)和點Q(x2,n)在函數y=ax2+bx+c的圖象上,且x1<x2,PQ=2m,求x21-mx2-3m+6的值.
x
2
1
【答案】(1)拋物線解析式為y=-x2-2x+3;(2)M(-1,2);(3)-mx2-3m+6=7.
x
2
1
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/9/13 15:0:8組卷:367引用:4難度:0.3
相似題
-
1.已知二次函數y=x2-mx+m-2:
(1)求證:不論m為任何實數,此二次函數的圖象與x軸都有兩個交點;
(2)當二次函數的圖象經過點(3,6)時,確定m的值,并寫出此二次函數與坐標軸的交點坐標.發(fā)布:2025/6/24 17:0:1組卷:1313引用:11難度:0.7 -
2.拋物線y=x2-2x+1與坐標軸交點個數為( ?。?/h2>
發(fā)布:2025/6/24 17:30:1組卷:1078引用:22難度:0.9 -
3.二次函數y=2x2-2x+m(0<m<
),如果當x=a時,y<0,那么當x=a-1時,函數值y的取值范圍為( ?。?/h2>12發(fā)布:2025/6/25 5:30:3組卷:143引用:2難度:0.7