【問題背景】:△ABC中,AB=AC,∠BAC=90°,P為BC上的動點,小熙拿含45°角的透明三角板,使45°角的頂點落在點P,三角板可繞P點旋轉(zhuǎn).
【用數(shù)學的眼光觀察】:(1)如圖1,當三角板的兩邊分別交AB、AC于點E、F時.以下結(jié)論正確的是:
②③④②③④;
①△BPE≌△CFP;
②△BPE∽△CFP;
③∠BEP=∠CPF;
④BECP=PEFP;
【用數(shù)學的思維思考】:(2)將三角板繞點P旋轉(zhuǎn)到圖2情形時,三角板的兩邊分別交BA的延長線、邊AC于點E、F.△BPE與△CFP相似嗎?請說明理由;
【用數(shù)學的語言表達】:
(3)在(2)的條件下,動點P運動到什么位置時,△BPE∽△PFE?說明理由.
BE
CP
=
PE
FP
【考點】相似形綜合題.
【答案】②③④
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/10/3 19:0:1組卷:316引用:2難度:0.3
相似題
-
1.小波在復習時,遇到一個課本上的問題,溫故后進行了操作、推理與拓展.
(1)溫故:如圖1,在△ABC中,AD⊥BC于點D,正方形PQMN的邊QM在BC上,頂點P,N分別在AB,AC上,且.若BC=6,AD=4,則正方形PQMN的邊長等于 ;PNBC+MNAD=1
(2)操作:能畫出這類正方形嗎?小波按數(shù)學家波利亞在《怎樣解題》中的方法進行操作:如圖2,任意畫△ABC,在AB上任取一點P',畫正方形P'Q'M'N',使Q',M'在BC邊上,N'在△ABC內(nèi),連結(jié)BN'并延長交AC于點N,畫NM⊥BC于點M,NP⊥NM交AB于點P,PQ⊥BC于點Q,得到四邊形PQMN;
(3)推理:如圖3,若點E是BN的中點,求證:EP=EQ;
(4)拓展:在(2)的條件下,射線BN上截取NE=NM,連結(jié)EQ,EM(如圖4).當∠NBM=30°時,猜想∠QEM的度數(shù),并嘗試證明.
請幫助小波解決“溫故”、“推理”、“拓展”中的問題.發(fā)布:2025/6/7 9:0:2組卷:103引用:3難度:0.3 -
2.圖①、圖②、圖③都是5×4的正方形網(wǎng)格,每個小正方形的頂點稱為格點,每個小正方形的邊長為1,點A、B、C、D均在格點上.請按要求解答問題.(畫圖只能用無刻度的直尺,保留作圖痕跡)
要求:(1)如圖①,=;BECE
(2)如圖②,在BC上找一點F使BF=2;
(3)如圖③,在AC上找一點M,連結(jié)BM、DM,使△ABM∽△CDM.發(fā)布:2025/6/7 8:30:2組卷:210引用:4難度:0.5 -
3.如圖①,在Rt△ABC中,∠C=90°,BC=8cm,AC=6cm,點P由A點出發(fā)以1cm/s的速度向終點C勻速移動,同時點Q由點C出發(fā)以2cm/s的速度向終點B勻速移動,當一個點到達終點時另一個點也隨之停止移動.
(1)填空:在 秒時,△PCQ的面積為△ACB的面積的;38
(2)經(jīng)過幾秒,以P、C、Q為頂點的三角形與△ACB相似?
(3)如圖②,D為AB上一點,且AD=AC,運動時間t為多少時,CD⊥PQ?發(fā)布:2025/6/9 4:30:2組卷:133引用:2難度:0.3
相關(guān)試卷