下面是一種類比、拓展的探究案例,先閱讀再解決后面的問題:
已知正方形ABCD,點M在是直線BC上一個動點,點N在直線DC上,且滿足∠MAN=45°,連接MN.
(1)如圖1,當(dāng)點M在邊BC上時,求證:MN=BM+DN.
請根據(jù)下面的思路分析填空:
延長線段CD至點E,使得DE=BM,連接AE,根據(jù)正方形性質(zhì)和作圖可證△ABM≌△ADE△ADE,得到AM=AE,接著可證明△AMN≌△AEN△AEN,可得出MN=ENEN,再由線段的加法可以得出MN=BM+DN.
(2)如圖2,當(dāng)點M在邊CB的延長線上,點N在DC的延長線上;
①猜想BM,DN,MN之間有怎樣的數(shù)量關(guān)系?并證明你的猜想.
②若BC=4,BM=1,求CN.

【考點】四邊形綜合題.
【答案】△ADE;△AEN;EN
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/9 13:30:1組卷:219引用:3難度:0.2
相似題
-
1.(1)如圖1,在四邊形ABCD中,∠ABC=∠ADC=90°,AD=CD,對角線BD=8,求四邊形ABCD的面積;
(2)如圖2,園藝設(shè)計師想在正六邊形草坪一角∠BOC內(nèi)改建一個小型的兒童游樂場OMAN.其中OA平分∠BOC,OA=100米,∠BOC=120°,點M,N分別在射線OB和OC上,且∠MAN=90°,為了盡可能的少破壞草坪,要使游樂場OMAN面積最小,你認(rèn)為園林規(guī)劃局的想法能實現(xiàn)嗎?若能,請求出游樂場OMAN面積的最小值;若不能,請說明理由.發(fā)布:2025/6/9 15:0:1組卷:243引用:2難度:0.2 -
2.如圖,在Rt△ABC中,AC=BC=4,∠ACB=90°,正方形BDEF的邊長為2,將正方形BDEF繞點B旋轉(zhuǎn)一周,連接AE、BE、CD.
(1)請判斷線段AE和CD的數(shù)量關(guān)系,并說明理由;
(2)當(dāng)A、E、F三點在同一直線上時,求CD的長;
(3)設(shè)AE的中點為M,連接FM,試求線段FM長的取值范圍.發(fā)布:2025/6/9 15:0:1組卷:209引用:1難度:0.1 -
3.[閱讀理解]
“倍長中線”是初中數(shù)學(xué)一種重要的思想方法.如圖1,在△ABC中,AD是BC邊上的中線,若延長AD至E,使DE=AD,連接CE,可根據(jù)SAB證明△ABD≌△ECD,則AB=EC.
[問題提出]
(1)如圖2,平行四邊形ABCD中,點E為CD邊的中點,在BC邊上找一點F,使得AF=AD+CF(要求:用直尺和圓規(guī)作圖,保留作圖痕跡,不寫作法).
(2)按照你(1)中的作圖過程證明:AF=AD+CF.發(fā)布:2025/6/9 15:30:2組卷:265引用:3難度:0.1