已知函數(shù)f(x)=ex-1g(x)-lnx.
(1)若函數(shù)g(x)=(12x2+ax+alnx)e1-x,討論f(x)的單調(diào)性;
(2)從下面①②兩個(gè)問題中任意選擇一個(gè)證明,若兩個(gè)都證明,則按第一個(gè)證明計(jì)分.
①若函數(shù)g(x)=(x+1)e1-xlnx,f(m)=f(n),且m≠n,證明:m+n<1;
②若函數(shù)g(x)=12x2e1-x(x2-xlnx+1x),證明:f(x)>1+ln22.
g
(
x
)
=
(
1
2
x
2
+
ax
+
alnx
)
e
1
-
x
g
(
x
)
=
1
2
x
2
e
1
-
x
(
x
2
-
xlnx
+
1
x
)
f
(
x
)
>
1
+
ln
2
2
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:128引用:2難度:0.2
相似題
-
1.已知函數(shù)f(x)=x3-2kx2+x-3在R上不單調(diào),則k的取值范圍是 ;
發(fā)布:2024/12/29 13:0:1組卷:226引用:3難度:0.8 -
2.在R上可導(dǎo)的函數(shù)f(x)的圖象如圖示,f′(x)為函數(shù)f(x)的導(dǎo)數(shù),則關(guān)于x的不等式x?f′(x)<0的解集為( )
A.(-∞,-1)∪(0,1) B.(-2,-1)∪(1,2) C.(-1,0)∪(1,+∞) D.(-∞,-2)∪(2,+∞) 發(fā)布:2024/12/29 13:0:1組卷:263引用:7難度:0.9 -
3.已知函數(shù)f(x)=ax2+x-xlnx(a∈R)
(Ⅰ)若函數(shù)f(x)在(0,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1,x2(x1≠x2),證明:.x1?x2>e2發(fā)布:2024/12/29 13:30:1組卷:138引用:2難度:0.2