如圖,△ABC是邊長(zhǎng)為5cm的等邊三角形,點(diǎn)P,Q分別從頂點(diǎn)A,B同時(shí)出發(fā),沿著線段AB,BC運(yùn)動(dòng),且它們的速度都為2cm/s,當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P,Q兩點(diǎn)停止運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)t為何值時(shí),△ABQ≌△CBP;
(2)連接AQ,CP相交于點(diǎn)M,則點(diǎn)P,Q在運(yùn)動(dòng)的過程中,∠CMQ會(huì)變化嗎?若變化則說明理由,若不變請(qǐng)求出它的度數(shù).
【考點(diǎn)】全等三角形的判定與性質(zhì);等邊三角形的性質(zhì).
【答案】(1)t=s時(shí),△ABQ≌△CBP;
(2)∠CMQ=60°不變.理由見解析.
5
4
(2)∠CMQ=60°不變.理由見解析.
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/3 14:30:1組卷:11引用:2難度:0.6
相似題
-
1.在△ABC中,高AD和BE所在的直線交于點(diǎn)H,且BH=AC,則∠ABC等于( ?。?/h2>
發(fā)布:2025/6/25 5:30:3組卷:3236引用:5難度:0.3 -
2.復(fù)習(xí)“全等三角形”的知識(shí)時(shí),老師布置了一道作業(yè)題:“如圖①,已知在△ABC中,AB=AC,P是△ABC內(nèi)部任意一點(diǎn),將AP繞A順時(shí)針旋轉(zhuǎn)至AQ,使得∠QAP=∠BAC,連接BQ、CP,則BQ=CP.”
(1)小亮是個(gè)愛動(dòng)腦筋的同學(xué),他通過對(duì)圖①的分析,證明了△ABQ≌△ACP,從而證得BQ=CP.請(qǐng)你幫小亮完成證明.
(2)之后,小亮又將點(diǎn)P移到等腰三角形ABC之外,原題中的條件不變,“BQ=CP”仍然成立嗎?若成立,請(qǐng)你就圖②給出證明.若不成立,請(qǐng)說明理由.發(fā)布:2025/6/25 8:0:1組卷:215引用:5難度:0.5 -
3.已知:如圖,在Rt△ABC中,∠C=90°,∠A=30°,分別以AB、AC為邊在△ABC的外側(cè)作等邊△ABE和等邊△ACD,DE與AB交于F,
求證:EF=FD.發(fā)布:2025/6/25 8:0:1組卷:297引用:2難度:0.5