對于n維向量A=(a1,a2,…,an),若對任意i∈{1,2,…,n}均有ai=0或ai=1,則稱A為n維T向量.對于兩個n維T向量A,B,定義d(A,B)=n∑i=1|ai-bi|.
(Ⅰ)若A=(1,0,1,0,1),B=(0,1,1,1,0),求d(A,B)的值.
(Ⅱ)現(xiàn)有一個5維T向量序列:A1,A2,A3,…,若A1=(1,1,1,1,1)且滿足:d(Ai,Ai+1)=2,i∈N*.求證:該序列中不存在5維T向量(0,0,0,0,0).
(Ⅲ)現(xiàn)有一個12維T向量序列:A1,A2,A3,…,若A1=(1,1,…,112個)且滿足:d(Ai,Ai+1)=m,m∈N*,i=1,2,3,…,若存在正整數(shù)j使得Aj=(0,0,…,012個),Aj為12維T向量序列中的項,求出所有的m.
n
∑
i
=
1
|
a
i
-
b
i
|
A
1
=
(
1
,
1
,…,
1
12
個
)
A
j
=
(
0
,
0
,…,
0
12
個
)
【考點】反證法與放縮法證明不等式.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/10/20 7:0:2組卷:97引用:3難度:0.5
相似題
-
1.若n是大于1的自然數(shù),求證
.122+132+…+1n2>12-1n+1發(fā)布:2024/12/5 8:0:1組卷:53引用:1難度:0.3 -
2.用反證法證明命題:“一個三角形中不能有兩個直角”的過程歸納為以下三個步驟:
①A+B+C=90°+90°+C>180°,這與三角形內(nèi)角和為180°相矛盾,A=B=90°不成立;
②所以一個三角形中不能有兩個直角;
③假設三角形的三個內(nèi)角A、B、C中有兩個直角,不妨設A=B=90°,
正確順序的序號為( ?。?/h2>發(fā)布:2024/11/29 21:30:4組卷:56引用:15難度:0.9 -
3.用反證法證明命題:“a,b,c,d∈R,a+b=1,c+d=1,且ac+bd>1,則a,b,c,d中至少有一個負數(shù)”時的假設為( )
發(fā)布:2024/12/11 21:30:3組卷:66引用:4難度:0.9
把好題分享給你的好友吧~~