已知{e1,e2,e3}為空間的一個基底,若a=e1+e2+e3,b=e1+e2-e3,c=e1-e2+e3,d=e1+2e2+3e3,且d=αa+βb+γc,則α,β,γ分別為( ?。?/h1>
e
1
e
2
e
3
a
e
1
e
2
e
3
b
e
1
e
2
e
3
c
e
1
e
2
e
3
d
e
1
e
2
e
3
d
α
a
+
β
b
+
γ
c
【考點(diǎn)】空間向量基本定理、正交分解及坐標(biāo)表示.
【答案】A
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/27 14:0:0組卷:50引用:8難度:0.7
相似題
-
1.對于非零空間向量
,a,b,現(xiàn)給出下列命題,其中為真命題的是( ?。?/h2>c發(fā)布:2024/12/29 11:0:2組卷:428引用:6難度:0.7 -
2.已知空間四邊形ABCO中,
,OA=a,OB=b,點(diǎn)N在BC上,且CN=2NB,M為OA中點(diǎn),則OC=c等于( )MN發(fā)布:2024/12/29 3:30:1組卷:91引用:4難度:0.7 -
3.
是空間的一組基底,則可以與向量{a,b,c}構(gòu)成基底的向量( ?。?/h2>p=a+b,q=a+2b發(fā)布:2024/12/16 11:30:2組卷:147引用:2難度:0.7