如圖①,在△ABC中,AB=AC=4,∠BAC=120°,D是BC的中點.

小明對圖①進行了如下探究:在直線AD上任取一點P,連接PB.將線段PB繞點P按逆時針方向旋轉60°,點B的對應點是點E,連接BE,得到△BPE.小明發(fā)現(xiàn),隨著點P在直線AD上位置的變化,點E的位置也在變化,點E可能在直線AD的左側,也可能在直線AD上,還可能在直線AD的右側.請你幫助小明繼續(xù)探究,并解答下列問題:
(1)當點E在直線AD上時,如圖②所示.
①∠BEP=60°60°;
②連接CE,直線CE與直線AB的位置關系是 AB∥ECAB∥EC.
(2)請在圖③中畫出△BPE,使點E在直線AD的右側,連接CE.試判斷直線CE與直線AB的位置關系,并說明理由.
(3)當點P在直線AD上運動時,求AE的最小值.
【考點】幾何變換綜合題.
【答案】60°;AB∥EC
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2025/6/17 6:0:2組卷:133引用:2難度:0.3
相似題
-
1.如圖,△ABC為邊長是4
的等邊三角形,四邊形DEFG是邊長是6的正方形.現(xiàn)將等邊△ABC和正方形DEFG按如圖①的方式擺放,使點C與點E重合,點B、C、E、F在同一條直線上,△ABC從圖①的位置出發(fā),以每秒1個單位長度的速度沿EF方向向右勻速運動,當點B與點E重合時停止運動,設△ABC的運動時間為t秒.3
(1)當點A與點D重合時,求此時t的值;
(2)在整個運動過程中,設等邊△ABC和正方形DEFG重疊部分的面積為S,求S與t之間的函數(shù)關系式;
(3)如圖②,當點A與點D重合時,作∠ABE的角平分線BM交AE于點M,將△ABM繞點A逆時針旋轉,使邊AB與邊AC重合,得到△ACN.在線段AG上是否存在H點,使得△ANH為等腰三角形?若存在,求線段AH的長度;若不存在,請說明理由.發(fā)布:2025/6/24 11:30:1組卷:111引用:1難度:0.3 -
2.將線段AB繞點A逆時針旋轉60°得到線段AC,繼續(xù)旋轉α(0°<α<120°)得到線段AD,連接CD.
(1)連接BD,
①如圖1,若α=80°,則∠BDC的度數(shù)為 ;
②在第二次旋轉過程中,請?zhí)骄俊螧DC的大小是否改變.若不變,求出∠BDC的度數(shù);若改變,請說明理由.
(2)如圖2,以AB為斜邊作直角三角形ABE,使得∠B=∠ACD,連接CE,DE.若∠CED=90°,求α的值.發(fā)布:2025/6/23 16:0:1組卷:633引用:8難度:0.1 -
3.如圖,在△ABC中,∠ABC=90°,AB=4,BC=3,點P從點A出發(fā),沿折線AB-BC以每秒5個單位長度的速度向點C運動,同時點D從點C出發(fā),沿CA以每秒2個單位長度的速度向點A運動,點P到達點C時,點P、D同時停止運動,當點P不與點A、C重合時,作點P關于直線AC的對稱點Q,連結PQ交AC于點E,連結DP、DQ,設點P的運動時間為t秒.
(1)當點D與點E重合時,求t的值.
(2)用含t的代數(shù)式表示線段CE的長.
(3)當△PDQ為直角三角形時,求△PDQ與△ABC重疊部分的面積.發(fā)布:2025/6/25 5:0:1組卷:45引用:1難度:0.1