已知f(x)=12x2-x-aln(x-a),a∈R.
(1)判斷函數(shù)f(x)的單調(diào)性;
(2)若x1,x2是函數(shù)g(x)=f(x+a)-a(x+12a-1)的兩個極值點,且x1<x2,求證:0<f(x1)-f(x2)<12.
f
(
x
)
=
1
2
x
2
-
x
-
aln
(
x
-
a
)
,
a
∈
R
g
(
x
)
=
f
(
x
+
a
)
-
a
(
x
+
1
2
a
-
1
)
0
<
f
(
x
1
)
-
f
(
x
2
)
<
1
2
【答案】(1)當(dāng)a=0時,f(x)=x2-x,f(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,
當(dāng)a>0時,f(x)在(a,a+1)上單調(diào)遞減,在(a+1,+∞)上單調(diào)遞增,
當(dāng)-1<a<0時,f(x)在(0,a+1)上單調(diào)遞減,在(a,0)和(a+1,+∞)上單調(diào)遞增,
當(dāng)a=-1時,f(x)在(-1,+∞)上單調(diào)遞增,
當(dāng)a<-1時,f(x)在(a+1,0)上單調(diào)遞減,在(a,a+1)和(0,+∞)上單調(diào)遞增.
(2)證明詳情見解答.
1
2
當(dāng)a>0時,f(x)在(a,a+1)上單調(diào)遞減,在(a+1,+∞)上單調(diào)遞增,
當(dāng)-1<a<0時,f(x)在(0,a+1)上單調(diào)遞減,在(a,0)和(a+1,+∞)上單調(diào)遞增,
當(dāng)a=-1時,f(x)在(-1,+∞)上單調(diào)遞增,
當(dāng)a<-1時,f(x)在(a+1,0)上單調(diào)遞減,在(a,a+1)和(0,+∞)上單調(diào)遞增.
(2)證明詳情見解答.
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:290引用:3難度:0.6
相似題
-
1.已知函數(shù)f(x)=x3-2kx2+x-3在R上不單調(diào),則k的取值范圍是 ;
發(fā)布:2024/12/29 13:0:1組卷:236引用:3難度:0.8 -
2.在R上可導(dǎo)的函數(shù)f(x)的圖象如圖示,f′(x)為函數(shù)f(x)的導(dǎo)數(shù),則關(guān)于x的不等式x?f′(x)<0的解集為( ?。?/h2>
發(fā)布:2024/12/29 13:0:1組卷:265引用:7難度:0.9 -
3.已知函數(shù)f(x)=ax2+x-xlnx(a∈R)
(Ⅰ)若函數(shù)f(x)在(0,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍;
(Ⅱ)若函數(shù)f(x)有兩個極值點x1,x2(x1≠x2),證明:.x1?x2>e2發(fā)布:2024/12/29 13:30:1組卷:141引用:2難度:0.2