1.如圖①,用一個平面去截圓錐得到的截口曲線是橢圓.許多人從純幾何的角度出發(fā)對這個問題進行過研究,其中比利時數(shù)學(xué)家Germinaldandelin(1794-1847)的方法非常巧妙,極具創(chuàng)造性.在圓錐內(nèi)放兩個大小不同的球,使得它們分別與圓錐的側(cè)面、截面相切,兩個球分別與截面相切于E、F,在截口曲線上任取一點A,過A作圓錐的母線,分別與兩個球相切于C、B,由球和圓的幾何性質(zhì),可以知道,AE=AC,AF=AB,于是AE+AF=AB+AC=BC.由B、C的產(chǎn)生方法可知,它們之間的距離BC是定值,由橢圓定義可知,截口曲線是以E、F為焦點的橢圓.
如圖②,一個半徑為2的球放在桌面上,桌面上方有一個點光源P,則球在桌面上的投影是橢圓,已知A
1A
2是橢圓的長軸,PA
1垂直于桌面且與球相切,PA
1=5,則橢圓的焦距為( ?。?/div>
發(fā)布:2024/9/11 5:0:9組卷:153引用:2難度:0.6