試卷征集
加入會員
操作視頻

(1)問題探究:
如圖1所示,有公共頂點A的兩個正方形ABCD和正方形AEFG.AE<AB,連接BE與DG,請判斷線段BE與線段DG之間有怎樣的數(shù)量關(guān)系和位置關(guān)系.并請說明理由.
(2)理解應(yīng)用
如圖2所示,有公共頂點A的兩個正方形ABCD和正方形AEFG,AE<AB,AB=10,將正方形AEFG繞點A在平面內(nèi)任意旋轉(zhuǎn),當(dāng)∠ABE=15°,且點D、E、G三點在同一條直線上時,請直接寫出AE的長
5
3
-5
5
3
-5
;
(3)拓展應(yīng)用
如圖3所示,有公共頂點A的兩個矩形ABCD和矩形AEFG,AD=4
13
,AB=4
39
,AG=4,AE=4
3
,將矩形AEFG繞點A在平面內(nèi)任意旋轉(zhuǎn),連接BD,DE,點M,N分別是BD,DE的中點,連接MN,當(dāng)點D、E、G三點在同一條直線上時,請直接寫出MN的長
6
3
或8
3
6
3
或8
3

【考點】四邊形綜合題
【答案】5
3
-5;6
3
或8
3
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/16 4:0:1組卷:943引用:4難度:0.2
相似題
  • 1.如圖直角坐標(biāo)系中直線AB與x軸正半軸、y軸正半軸交于A,B兩點,已知B(0,4),∠BAO=30°,P,Q分別是線段OB,AB上的兩個動點,P從O出發(fā)以每秒3個單位長度的速度向終點B運動,Q從B出發(fā)以每秒8個單位長度的速度向終點A運動,兩點同時出發(fā),當(dāng)其中一點到達(dá)終點時整個運動結(jié)束,設(shè)運動時間為t(秒).
    (1)求線段AB的長,及點A的坐標(biāo);
    (2)t為何值時,△BPQ的面積為2
    3
    ;
    (3)若C為OA的中點,連接QC,QP,以QC,QP為鄰邊作平行四邊形PQCD,
    ①t為何值時,點D恰好落在坐標(biāo)軸上;
    ②是否存在時間t使x軸恰好將平行四邊形PQCD的面積分成1:3的兩部分,若存在,直接寫出t的值.

    發(fā)布:2025/6/20 23:0:1組卷:1027引用:6難度:0.3
  • 2.如圖,在梯形ABCD中,AD∥BC,∠B=90°,AB=10cm,AD=20cm,BC=24cm,動點P從點A出發(fā)沿AD方向向點D以1cm/s的速度運動,動點Q從點C開始沿CB方向向點B以3cm/s的速度運動.P、Q兩點同時出發(fā),設(shè)運動時間為t,當(dāng)其中一點到達(dá)端點時,另一點隨之停止運動.
    (1)當(dāng)t=3時,PD=
    ,CQ=

    (2)當(dāng)t為何值時,四邊形CDPQ是平行四邊形?請說明理由.
    (3)在運動過程中,設(shè)四邊形CDPQ的面積為S,寫出S與t的函數(shù)關(guān)系式,并求當(dāng)t為何值時,S的值最大,最大值是多少?

    發(fā)布:2025/6/21 2:0:1組卷:147引用:2難度:0.3
  • 3.如圖,四邊形ABCD是正方形,E是線段BC上一點,連接AE,將AE繞點E順時針旋轉(zhuǎn)90°,得到EF,過點F作FG⊥CD于點G.
    (1)如圖①,當(dāng)E是BC的中點時,請直接寫出線段FG和BE的數(shù)量關(guān)系;
    (2)如圖②,當(dāng)E不是BC的中點時,(1)中的結(jié)論是否成立?請說明理由;
    (3)若BC=4,CE=2,EF與CD交于點P,請求出CP的長.

    發(fā)布:2025/6/20 12:0:2組卷:32引用:1難度:0.1
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正