請(qǐng)仔細(xì)觀察計(jì)算過(guò)程,完成下列問(wèn)題:
1√2+1=1×(√2-1)(√2+1)(√2-1)=√2-1;
1√3+√2=1×(√3-√2)(√3+√2)(√3-√2)=√3-√2;
12+√2=1×(2-√2)(2+√2)(2-√2)=2-√3;
….
(1)1√6+√5=√6-√5√6-√5;
(2)1√n+1+√n=√n+1-√n√n+1-√n(n為正整數(shù));
(3)求11+√2+1√2+√3+1√3+√4+…+1√98+√99+1√99+√100的值.
1
√
2
+
1
=
1
×
(
√
2
-
1
)
(
√
2
+
1
)
(
√
2
-
1
)
=
√
2
-
1
1
√
3
+
√
2
=
1
×
(
√
3
-
√
2
)
(
√
3
+
√
2
)
(
√
3
-
√
2
)
=
√
3
-
√
2
1
2
+
√
2
=
1
×
(
2
-
√
2
)
(
2
+
√
2
)
(
2
-
√
2
)
=
2
-
√
3
1
√
6
+
√
5
√
6
√
5
√
6
√
5
1
√
n
+
1
+
√
n
√
n
+
1
√
n
√
n
+
1
√
n
1
1
+
√
2
+
1
√
2
+
√
3
+
1
√
3
+
√
4
+
…
+
1
√
98
+
√
99
+
1
√
99
+
√
100
【答案】-;-
√
6
√
5
√
n
+
1
√
n
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:112引用:2難度:0.7