閱讀下列材料,并利用材料中使用的方法解決問題:
在學(xué)習(xí)完全平方公式時,老師提出了這樣一個問題:同學(xué)們,你們能判斷代數(shù)式a2-2a+2的最小值嗎?小明作出了如下的回答:
在老師所給的代數(shù)式中,隱藏著一個完全平方式,我可以把它找出來:a2-2a+2=a2-2?a?1+12+1=(a-1)2+1,
因?yàn)橥耆椒绞绞欠秦?fù)的,所以它一定大于等于0,余下的1為常數(shù),所以有a2-2a+2=(a-1)2+1≥1,
所以a2-2a+2的最小值是1,當(dāng)且僅當(dāng)a-1=0即a=1時取得最小值,其中,我們將代數(shù)式a2-2a+2改寫為一個含有完全平方式的代數(shù)式的方法稱為配方,利用配方求解下列問題:
(1)記S=(x+3)2+4,求S的最小值,并說明x取何值時S最??;
(2)已知a2+b2+6a-8b+25=0,求a、b的值;
(3)記T=a2+2ab+3b2+4b+5,求T的最小值,并說明a、b取何值時T最?。?/h1>
【考點(diǎn)】配方法的應(yīng)用;非負(fù)數(shù)的性質(zhì):偶次方.
【答案】(1)x=-3時,S最小=4;
(2)a=-3,b=4;
(3)當(dāng)a=1,b=-1時,T最小=3.
(2)a=-3,b=4;
(3)當(dāng)a=1,b=-1時,T最小=3.
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/5/31 13:30:2組卷:477引用:3難度:0.5
相似題
-
1.已知實(shí)數(shù)m,n滿足m-n2=1,則代數(shù)式m2+2n2+4m-1的最小值等于 .
發(fā)布:2025/6/14 0:30:2組卷:9531引用:63難度:0.7 -
2.王老師提出問題:求代數(shù)式x2+4x+5的最小值.要求同學(xué)們運(yùn)用所學(xué)知識進(jìn)行解答.
同學(xué)們經(jīng)過探索、交流和討論,最后總結(jié)出如下解答方法;
解:x2+4x+5=x2+4x+22-22+5=(x+2)2+1,
∵(x+2)2≥0,∴(x+2)2+1≥1.
當(dāng)(x+2)2=0時,(x+2)2+1的值最小,最小值是1.
∴x2+4x+5的最小值是1.
請你根據(jù)上述方法,解答下列各題:
(1)直接寫出(x-1)2+3的最小值為 .
(2)求代數(shù)式x2+10x+32的最小值.
(3)你認(rèn)為代數(shù)式有最大值還是有最小值?求出該最大值或最小值.-13x2+2x+5
(4)若7x-x2+y-11=0,求x+y的最小值.發(fā)布:2025/6/13 18:0:2組卷:506引用:5難度:0.5 -
3.若p=a2+b2+2a+4b+2021,則p的最小值是( ?。?/h2>
發(fā)布:2025/6/13 18:30:2組卷:141引用:2難度:0.6