【數(shù)學概念】
我們把存在內(nèi)切圓與外接圓的四邊形稱為雙圓四邊形.例如,如圖①,四邊形ABCD內(nèi)接于⊙M,且每條邊均與⊙P相切,切點分別為E,F(xiàn),G,H,因此該四邊形是雙圓四邊形.
【性質(zhì)初探】
(1)雙圓四邊形的對角的數(shù)量關(guān)系是 互補互補,依據(jù)是 圓內(nèi)接四邊形的對角互補圓內(nèi)接四邊形的對角互補.
(2)直接寫出雙圓四邊形的邊的性質(zhì).(用文字表述)
(3)在圖①中,連接GE,HF,求證GE⊥HF.
【揭示關(guān)系】
(4)根據(jù)雙圓四邊形與四邊形、平行四邊形、矩形、菱形、正方形的關(guān)系,在圖②中畫出雙圓四邊形的大致區(qū)域,并用陰影表示.
【特例研究】
(5)已知P,M分別是雙圓四邊形ABCD的內(nèi)切圓和外接圓的圓心,若AB=2,BC=4,∠B=90°,則PM的長為 5353.

5
3
5
3
【考點】圓的綜合題.
【答案】互補;圓內(nèi)接四邊形的對角互補;
5
3
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/9/24 1:0:8組卷:169引用:4難度:0.1
相似題
-
1.如圖,AB為⊙O的直徑,弦CD⊥AB于點E,F(xiàn)是CD上一點,且AF=CF,點P在FA的延長線上,且∠PFD=∠PDF,延長PF與⊙O交于點G,連接AC,CG.
(1)求證:△AFC∽△ACG;
(2)求證:PD是⊙O的切線;
(3)若tanG=,BE-AE=34,求73的值.S△AFCS△CFG發(fā)布:2025/5/24 5:30:2組卷:72引用:1難度:0.4 -
2.如圖,在△AEF中,∠F=∠AEF,以AE為直徑作⊙O,分別交邊AF和邊EF于點G和點D,過點D作DC⊥AF交AF于點C,延長CD交AE的延長線于點B,過點E作EH⊥BC于點H.
(1)試判斷BD與⊙O的位置關(guān)系,并說明理由;
(2)證明:EH=CF.
(3)若∠B=30°,AE=12,求圖中陰影部分的面積.發(fā)布:2025/5/24 6:0:2組卷:164引用:5難度:0.2 -
3.如圖,線段AB經(jīng)過⊙O的圓心O,交⊙O于A,C兩點,AD為⊙O的弦,連接BD,∠A=∠ABD=30°,連接DO并延長,交⊙O于點E,連接BE交⊙O于點F.
(1)求證:BD是⊙O的切線;
(2)求證:2AD2=DE?AB;
(3)若BC=1,求BF的長.發(fā)布:2025/5/24 6:30:2組卷:547引用:3難度:0.7
相關(guān)試卷