約定:若三角形一邊上的中線將三角形分得的兩個(gè)小三角形中有一個(gè)三角形與原三角形相似,我們則稱原三角形為關(guān)于該邊的“優(yōu)美三角形”.例如:如圖1,在△ABC中,AD為邊BC上的中線,△ABD與△ABC相似,那么稱△ABC為關(guān)于邊BC的“優(yōu)美三角形”.
(1)如圖2,在△ABC中,BC=2AB,求證:△ABC為關(guān)于邊BC的“優(yōu)美三角形”;
(2)如圖3,已知△ABC為關(guān)于邊BC的“優(yōu)美三角形”,點(diǎn)D是△ABC邊BC的中點(diǎn),以BD為直徑的⊙O恰好經(jīng)過點(diǎn)A.
①求證:直線CA與⊙O相切;
②若⊙O的直徑為26,求線段AB的長(zhǎng);
(3)已知三角形ABC為關(guān)于邊BC的“優(yōu)美三角形”,BC=4,∠B=30°,求△ABC的面積.
2
6
【考點(diǎn)】圓的綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:543引用:1難度:0.3
相似題
-
1.如圖,AB是圓O的直徑,弦CD與AB交于點(diǎn)H,∠BDC=∠CBE.
(1)求證:BE是圓O的切線;
(2)若CD⊥AB,AC=2,BH=3,求劣弧BC的長(zhǎng);
(3)如圖,若CD∥BE,作DF∥BC,滿足BC=2DF,連接FH、BF,求證:FH=BF.發(fā)布:2025/1/28 8:0:2組卷:96引用:1難度:0.1 -
2.如圖,AB是圓O的直徑,弦CD⊥AB于G,射線DO與直線CE相交于點(diǎn)E,直線DB與CE交于點(diǎn)H,且∠BDC=∠BCH.
(1)求證:直線CE是圓O的切線.
(2)如圖1,若OG=BG,BH=1,直接寫出圓O的半徑;
(3)如圖2,在(2)的條件下,將射線DO繞D點(diǎn)逆時(shí)針旋轉(zhuǎn),得射線DM,DM與AB交于點(diǎn)M,與圓O及切線CF分別相交于點(diǎn)N,F(xiàn),當(dāng)GM=GD時(shí),求切線CF的長(zhǎng).發(fā)布:2025/1/28 8:0:2組卷:775引用:2難度:0.1 -
3.如圖,AB是圓O的直徑,AB=6,D是半圓ADB上的一點(diǎn),C是弧BD的中點(diǎn).
(1)若∠ABD=30°,求BC的長(zhǎng)和由弦BC、BD、和弧CD圍成的圖形面積;
(2)若弧AD的度數(shù)是120度,在半徑OB上是否存在點(diǎn)P,使得PC+PD的值最小,如果存在,請(qǐng)?jiān)趥溆脠D中畫出P的位置,并求PC+PD的最小值,如果不存在,請(qǐng)說明理由.發(fā)布:2025/1/28 8:0:2組卷:42引用:0難度:0.3