試卷征集
加入會員
操作視頻

將一個矩形紙片OABC放置在平面直角坐標系中,OA,OC分別在x軸,y軸的正半軸上,點B坐標為(4,10).
(Ⅰ)如圖①,將矩形紙片OABC折疊,使點B落在y軸上的點D處,折痕為線段AE,求點D坐標;
(Ⅱ)如圖②,點E,F(xiàn)分別在OC,AB邊上.將矩形紙片OABC沿線段EF折疊,使得點B與點D(0,2)重合,求點C的對應點G的坐標;
(Ⅲ)在(Ⅱ)的條件下,若點P是坐標系內(nèi)任意一點,點Q在y軸上,使以點D,F(xiàn),P,Q為頂點的四邊形是菱形,請直接寫出滿足條件的點P的坐標.

【考點】四邊形綜合題
【答案】(Ⅰ)點D的坐標為(0,2
21
);
(Ⅱ)點G的坐標為(-
12
5
,
26
5
);
(Ⅲ)點P的坐標為(4,10),(4,0),(-4,5),(4,
5
6
).
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/7/17 8:0:9組卷:2278引用:10難度:0.4
相似題
  • 1.問題情?境
    如圖,在四邊形ABCD中,連接BD,∠ABD=∠BCD=90°,∠ADB=30°,∠BDC=45°,AB=2,點E為AD的中點,連接CE.以點D為中心,順時針旋轉(zhuǎn)△DEC,得到△DGF,點E,C的對應點分別為點G,F(xiàn).
    問題探究
    (1)如圖①,則CE的長為
    ;
    (2)如圖②,在△DFG旋轉(zhuǎn)過程中,當B,F(xiàn),G三點共線時,求△ABF的面積;
    (3)如圖③,在△DFG旋轉(zhuǎn)過程中,連接AF,AG,直接寫出△AFG面積的最大值.

    發(fā)布:2025/5/22 18:30:2組卷:315引用:1難度:0.1
  • 2.在數(shù)學興趣社團課上,同學們對平行四邊形進行了深入探究.
    探究一:如圖1,在矩形ABCD中,AC2=AB2+BC2,BD2=AC2=CD2+AD2,則AC2+BD2=AB2+BC2+CD2+AD2,由此得出結論:矩形兩條對角線的平方和等于其四邊的平方和.
    探究二:對于一般的平行四邊形,是否仍有上面的結論呢?
    證明:如圖2,在?ABCD中,過A作AM⊥BC于M,過D作DN⊥BC,交BC延長線于N.設AB=a,BC=b,BM=x,AM=y,
    ∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,∴∠ABC=∠DCN,
    又∵∠AMB=∠DNC=90°,∴△ABM≌△DCN.
    ∴CN=BM=x,DN=AM=y.
    請你接著完成上面的證明過程.
    結論應用:若一平行四邊形的周長為20,兩條對角線長分別為8,2
    10
    ,求該平行四邊形的四條邊長.

    發(fā)布:2025/5/22 18:30:2組卷:223引用:1難度:0.5
  • 3.我們定義:如圖1,在△ABC中,把AB繞點A順時針旋轉(zhuǎn)α(0°<α<180°)得到AB',把AC繞點A逆時針旋轉(zhuǎn)β得到AC',連接B'C'.當α+β=180°時,我們稱△A'B'C'是△ABC的“旋補三角形”,△AB'C'邊B'C'上的中線AD叫做△ABC的“旋補中線”,點A叫做“旋補中心”.
    特例感知:
    (1)在圖2,圖3中,△AB'C'是△ABC的“旋補三角形”,AD是△ABC的“旋補中線”.
    ①如圖2,當△ABC為等邊三角形時,AD與BC的數(shù)量關系為AD=
    BC;
    ②如圖3,當∠BAC=90°,BC=8時,則AD長為

    猜想論證:
    (2)在圖1中,當△ABC為任意三角形時,猜想AD與BC的數(shù)量關系,并給予證明.
    拓展應用
    (3)如圖4,在四邊形ABCD,∠C=90°,∠D=150°,BC=12,CD=2
    3
    ,DA=6.在四邊形內(nèi)部是否存在點P,使△PDC是△PAB的“旋補三角形”?若存在,給予證明,并求△PAB的“旋補中線”長;若不存在,說明理由.

    發(fā)布:2025/5/22 18:30:2組卷:3823引用:11難度:0.1
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網(wǎng) | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正