試卷征集
加入會員
操作視頻

已知a、b是△ABC的兩邊,且滿足a2-b2=ac-bc,則△ABC的形狀是( ?。?/h1>

【答案】A
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/14 8:0:9組卷:603引用:5難度:0.6
相似題
  • 1.已知n是正整數(shù),則所有大于1的奇數(shù)可以用代數(shù)式2n+1來表示.
    (1)分解因式:(2n+1)2-1;
    (2)我們把所有“大于1的奇數(shù)的平方減去1”所得的數(shù)叫”白銀數(shù)”,則所有”白銀數(shù)”的最大公約數(shù)是多少?請簡要說明理由.

    發(fā)布:2024/10/27 17:0:2組卷:338引用:2難度:0.5
  • 2.閱讀下列材料,解決后面兩個問題:
    一個能被17整除的自然數(shù)我們稱為“靈動數(shù)”.“靈動數(shù)”的特征是:若把一個整數(shù)的個位數(shù)字截去,再從余下的數(shù)中,減去個位數(shù)的5倍,如果差是17的整倍數(shù)(包括0),則原數(shù)能被17整除.如果差太大或心算不易看出是否是17的倍數(shù),就繼續(xù)上述的“截尾、倍大、相減、驗差”的過程,直到能清楚判斷為止.
    例如:判斷1675282能不能被17整除.167528-2×5=167518,16751-8×5=16711,1671-1×5=1666,166-6×5=136,到這里如果你仍然觀察不出來,就繼續(xù)…6×5=30,現(xiàn)在個位×5=30>剩下的13,就用大數(shù)減去小數(shù),30-13=17,17÷17=1;所以1675282能被17整除.
    (1)請用上述方法判斷7242和2098754是否是“靈動數(shù)”,并說明理由;
    (2)已知一個四位整數(shù)可表示為
    27
    mn
    ,其中個位上的數(shù)字為n,十位上的數(shù)字為m,0≤m≤9,0≤n≤9且m,n為整數(shù).若這個數(shù)能被51整除,請求出這個數(shù).

    發(fā)布:2024/10/27 17:0:2組卷:504引用:2難度:0.3
  • 3.閱讀下列材料,解決問題:
    我們把一個能被17整除的自然數(shù)稱為“節(jié)儉數(shù)”,“節(jié)儉數(shù)”的特征是:若把一個自然數(shù)的個位數(shù)字截去,再把剩下的數(shù)減去截去的那個個位數(shù)字的5倍,如果差是17的整數(shù)倍(包括0),則原數(shù)能被17整除.如果差太大或心算不易看出是否是17的倍數(shù),就繼續(xù)上述的“截尾、倍大、相減、驗差”的過程,直到能清楚判斷為止.
    例如:判斷1675282是不是“節(jié)儉數(shù)”.判斷過程:167528-2×5=167518,16751-8×5=16711,1671-1×5=1666,166-6×5=136,到這里如果你仍然觀察不出來,就繼續(xù)13-6×5=-17,-17是17的整數(shù)倍,所以1675282能被17整除.所以1675282是“節(jié)儉數(shù)”.
    (1)請用上述方法判斷7259和2098752 是否是“節(jié)儉數(shù)”,并說明理由;
    (2)一個五位節(jié)儉數(shù)
    123
    ab
    ,其中個位上的數(shù)字為b,十位上的數(shù)字為a,請求出這個數(shù).

    發(fā)布:2024/10/27 17:0:2組卷:159引用:2難度:0.2
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:4.8.2  |  隱私協(xié)議      第三方SDK     用戶服務(wù)條款廣播電視節(jié)目制作經(jīng)營許可證出版物經(jīng)營許可證網(wǎng)站地圖本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正