如圖1,在正方形ABCD中,AE⊥FG,垂足為O.
(1)求證:AE=FG;
(2)如圖2,平移線段FG,使DG=BE,連接OD.
①求證:OD=AD;
②如圖3,連接OB,當D、O、B三點共線時,則OG2AD2=2-22-2.

O
G
2
A
D
2
2
2
【考點】四邊形綜合題.
【答案】2-
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/3 8:0:1組卷:312引用:5難度:0.4
相似題
-
1.如圖,矩形ABCD中,AB=21cm,AD=12cm.E是CD邊上的一點,DE=16cm,M是BC邊的中點,動點P從點A出發(fā),沿邊AB以1cm/s的速度向終點B運動,過點P作PH⊥AE于點H,連接EP,設(shè)動點P的運動時間是t(s)(0<t<21).
(1)求t為何值時,PM⊥EM;
(2)設(shè)△EHP的面積為y(cm2),寫出y(cm2)與t(s)之間的函數(shù)關(guān)系式;
(3)當EP平分四邊形PMEH的面積時,求t的值.發(fā)布:2025/5/24 2:30:1組卷:100引用:1難度:0.1 -
2.綜合與實踐
綜合與實踐課上,老師與同學(xué)們以“特殊的三角形”為主題開展數(shù)學(xué)活動.
(1)操作判斷
如圖1,在△ABC中,∠ABC=90°,AB=BC,點P是直線AC上一動點.
操作:連接BP,將線段BP繞點P逆時針旋轉(zhuǎn)90°得到PD,連接DC,如圖2.
根據(jù)以上操作,判斷:如圖3,當點P與點A重合時,則四邊形ABCD的形狀是 ;
(2)遷移探究
①如圖4,當點P與點C重合時,連接DB,判斷四邊形ABDC的形狀,并說明理由;
②當點P與點A,點C都不重合時,試猜想DC與BC的位置關(guān)系,并利用圖2證明你的猜想;
(3)拓展應(yīng)用
當點P與點A,點C都不重合時,若AB=4,AP=3,請直接寫出CD的長.發(fā)布:2025/5/24 2:30:1組卷:193引用:1難度:0.2 -
3.(1)證明推斷
如圖1,在正方形ABCD中,點E是對角線BD上一點,過點E作AE,BD的垂線,分別交直線BC于點F、G.
①求證:△ABE≌△FGE;
②推斷:的值為 ;EFAE
(2)類比探究
如圖2,在矩形ABCD中,=m,點E是對角線BD上一點,過點E作AE,BD的垂線分別交直線BC于點F,G.探究ABBC的值(用含m的式子表示),并寫出探究過程;EFAE
(3)拓展運用
在(2)的條件下,連接CE,當m=,CE=CD時,若CG=1,求EF的長.12發(fā)布:2025/5/24 2:30:1組卷:739引用:4難度:0.1