如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象交坐標(biāo)軸于A(-2,0),B(4,0),C(0,8)三點(diǎn),點(diǎn)P是直線BC上方拋物線上的一個(gè)動(dòng)點(diǎn).

(1)求這個(gè)二次函數(shù)的解析式;
(2)動(dòng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PBC的面積最大,求此時(shí)P點(diǎn)坐標(biāo)及△PBC面積的最大值;
(3)在y軸上是否存在點(diǎn)Q,使以O(shè),B,Q為頂點(diǎn)的三角形與△AOC相似?若存在,請直接寫出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
【考點(diǎn)】二次函數(shù)綜合題.
【答案】(1)y=-x2+2x+8;
(2)當(dāng)P點(diǎn)坐標(biāo)為(2,8)時(shí),△PBC的最大面積為8;
(3)Q(0,16),(0,-16),(0,1),(0,-1).
(2)當(dāng)P點(diǎn)坐標(biāo)為(2,8)時(shí),△PBC的最大面積為8;
(3)Q(0,16),(0,-16),(0,1),(0,-1).
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:336引用:1難度:0.5
相似題
-
1.如圖,已知拋物線l:y=-x2+2x+3與x軸交于點(diǎn)A,點(diǎn)B(A在B的左側(cè)),與y軸交于點(diǎn)C.l'是l關(guān)于x軸對稱的拋物線.
(1)求拋物線l'的解析式;
(2)拋物線l'與y軸交于點(diǎn)D,點(diǎn)P是拋物線l'的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線交BD所在的直線于點(diǎn)M.當(dāng)以C,D,M,P為頂點(diǎn)的四邊形是平行四邊形時(shí),求點(diǎn)M的坐標(biāo).發(fā)布:2025/5/24 6:30:2組卷:406引用:1難度:0.3 -
2.如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),連接BC.P是直線BC上方拋物線上一動(dòng)點(diǎn),連接PA,交BC于點(diǎn)D.其中BC=AB,tan∠ABC=
.34
(1)求拋物線的解析式;
(2)求的最大值;PDDA
(3)若函數(shù)y=ax2+bx+3在(其中m-12≤x≤m+12)范圍內(nèi)的最大值為s,最小值為t,且m≤56≤s-t<12,求m的取值范圍.32發(fā)布:2025/5/24 6:0:2組卷:213引用:1難度:0.1 -
3.如圖,在平面直角坐標(biāo)系中,拋物線y=x2+bx+c經(jīng)過點(diǎn)A(-1,0),B(
,0),直線y=x+52與拋物線交于C,D兩點(diǎn),點(diǎn)P是拋物線在第四象限內(nèi)圖象上的一個(gè)動(dòng)點(diǎn).過點(diǎn)P作PG⊥CD,垂足為G,PQ∥y軸,交x軸于點(diǎn)Q.12
(1)求拋物線的函數(shù)表達(dá)式;
(2)當(dāng)PG+PQ取得最大值時(shí),求點(diǎn)P的坐標(biāo)和2PG+PQ的最大值;2
(3)將拋物線向右平移個(gè)單位得到新拋物線,M為新拋物線對稱軸上的一點(diǎn),點(diǎn)N是平面內(nèi)一點(diǎn).當(dāng)(2)中134PG+PQ最大時(shí),直接寫出所有使得以點(diǎn)A,P,M,N為頂點(diǎn)的四邊形是菱形的點(diǎn)N的坐標(biāo),并把求其中一個(gè)點(diǎn)N的坐標(biāo)的過程寫出來.2發(fā)布:2025/5/24 5:0:1組卷:1766引用:4難度:0.3