觀察圖,解答下列問題,
(1)圖中的圓圈被折線隔開分成六層,第一層有1個圓圈,第二層有3個圓圈,第三層有5個圓圈,…,第六層有11個圓圈.如果要你繼續(xù)畫下去,第n層有個 (2n-1)(2n-1)圓圈.
(2)某一層上有65個圓圈,這是第 3333層.
(3)數(shù)圖中的圓圈個數(shù)可以有多種不同的方法.比如:前兩層的圓圈個數(shù)和為(1+3)或22,由此得,1+3=22,同樣:由前三層的圓圈個數(shù)和得:1+3+5=32,由前四層的圓圈個數(shù)和得:1+3+5+7=42,…根據(jù)上述規(guī)律,從1開始的n個連續(xù)奇數(shù)之和是多少?用n的代數(shù)式把它表示出來.
(4)運用(3)中的規(guī)律計算:73+75+77+…+153.
【答案】(2n-1);33
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/6 1:0:8組卷:262引用:2難度:0.7
相似題
-
1.下列圖形都是由同樣大小的平行四邊形按一定的規(guī)律組成,其中,第①個圖形中一共有1個平行四邊形,第②個圖形中一共有5個平行四邊形,第③個圖形中一共有11個平行四邊形,…則第⑥個圖形中平行四邊形的個數(shù)為( ?。?br />
發(fā)布:2024/12/23 11:0:1組卷:544引用:44難度:0.9 -
2.把黑色三角形按如圖所示的規(guī)律拼圖案,其中第①個圖案中有3個黑色三角形,第②個圖案中有7個黑色三角形,第③個圖案中有11個黑色三角形,……,按此規(guī)律排列下去,則第⑧個圖案中黑色三角形的個數(shù)為( )
發(fā)布:2024/12/16 2:30:1組卷:87引用:3難度:0.6 -
3.用棋子擺出下列一組三角形,三角形每邊有n枚棋子,每個三角形的棋子總數(shù)是S.按此規(guī)律推斷,當三角形邊上有n枚棋子時,該三角形的棋子總數(shù)S等于( ?。?br />
發(fā)布:2024/12/16 5:30:2組卷:305引用:15難度:0.9
把好題分享給你的好友吧~~