綜合與實踐:綜合與實踐課上,老師讓同學(xué)們以“三角板的平移”為主題開展數(shù)學(xué)活動.

(1)操作判斷:
操作一:將一副等腰直角三角板兩斜邊重合,按圖1放置;
操作二:將三角板ACD沿CA方向平移(兩三角板始終接觸)至圖2位置.
根據(jù)以上操作,填空:
①圖1中四邊形ABCD的形狀是 正方形正方形;
②圖2中AA′與CC′的數(shù)量關(guān)系是 AA′=CC′AA′=CC′;四邊形ABC′D′的形狀是 平行四邊形平行四邊形;
(2)遷移探究:小航將一副等腰直角三角板換成一副含30°角的直角三角板,繼續(xù)探究,已知三角板AB邊長為4cm,過程如下:將三角板ACD按(1)中的方式操作,如圖3,在平移過程中,四邊形ABCD的形狀能否是菱形,若不能,請說明理由,若能,請求出CC′的長.
(3)拓展應(yīng)用在(2)的探究過程中:當(dāng)△BCC′為等腰三角形時,請直接寫出CC′的長;
【考點】四邊形綜合題.
【答案】正方形;AA′=CC′;平行四邊形
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/1 8:0:9組卷:29引用:1難度:0.1
相似題
-
1.如圖,四邊形ABCD、EBGF都是正方形.
(1)如圖1,若AB=4,EC=,求FC的長;17
(2)如圖2,正方形EBGF繞點B逆時針旋轉(zhuǎn),使點G正好落在EC上,猜想AE、EB、EC之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)如圖3,在(2)條件下,∠BCE=22.5°,EC=2,點M為直線BC上一動點,連接EM,過點M作MN⊥EC,垂足為點N,直接寫出EM+MN的最小值.發(fā)布:2025/5/24 19:0:1組卷:233引用:2難度:0.5 -
2.如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=
,把Rt△ABC沿AB翻折得到Rt△ABD,過點B作BE⊥BC,交AD于點E,點F是線段BE上一點,且tan∠ADF=3.則下列結(jié)論中:①AE=BE;②△BED∽△ABC;③BD2=AD?DE;④AF=32.正確的有 .(把所有正確答案的序號都填上)2133發(fā)布:2025/5/24 19:30:1組卷:526引用:3難度:0.3 -
3.在矩形ABCD中,AB=6,BC=8,
【問題發(fā)現(xiàn)】
(1)如圖1,E為邊DC上的一個點,連接BE,過點C作BE的垂線交AD于點F,試猜想BE與CF的數(shù)量關(guān)系并說明理由.
【類比探究】
(2)如圖2,G為邊AB上的一個點,E為邊CD延長線上的一個點,連接GE交AD于點H,過點C作GE的垂線交AD于點F,試猜想GE與CF的數(shù)量關(guān)系并說明理由.
【拓展延伸】
(3)如圖3,點E從點B出發(fā)沿射線BC運(yùn)動,連接AE,過點B作AE的垂線交射線CD于點F,過點E作BF的平行線,過點F作BC的平行線,兩平行線交于點H,連接DH,在點E的運(yùn)動的路程中,線段DH的長度是否存在最小值?若存在,求出線段DH長度的最小值;若不存在,請說明理由.發(fā)布:2025/5/24 20:0:2組卷:309引用:3難度:0.2