勾股定理是人類最偉大的十個科學(xué)發(fā)現(xiàn)之一,西方國家稱之為畢達(dá)哥拉斯定理.在我國古書《周髀算經(jīng)》中就有“若勾三,股四,則弦五”的記載,我國漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一幅弦圖”(如圖1),后人稱之為“趙爽弦圖”,流傳至今.
(1)①請敘述勾股定理.②勾股定理的證明,人們已經(jīng)找到了400多種方法,請從下列幾種常見的證明方法中任選一種來證明該定理,圖1與圖2都是由四個全等的直角三角形構(gòu)成,圖3是由兩個全等的直角三角形構(gòu)成(以下圖形均滿足證明勾股定理所需的條件);
(2)如圖4,以直角三角形的三邊為直徑向外部作半圓,請寫出S1、S2和S3的數(shù)量關(guān)系:S1+S2=S3S1+S2=S3.
【答案】S1+S2=S3
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/6 1:0:8組卷:109引用:3難度:0.5
相似題
-
1.用四個全等的直角三角形鑲嵌而成的正方形如圖所示,已知大正方形的面積為49,小正方形的面積為4,若x,y表示直角三角形的兩直角邊長(x>y),給出下列四個結(jié)論正確的是 .(填序號即可)
①x-y=2;
②x2+y2=49;
③2xy=45;
④x+y=9.發(fā)布:2024/12/23 12:0:2組卷:446引用:3難度:0.6 -
2.“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學(xué)的驕傲如圖所示的“趙爽弦圖”是由四個全等的直角三角形和一個小正方形拼成的一個大正方形.設(shè)直角三角形較長直角邊長為a,較短直角邊長為b,若ab=8,大正方形的面積為25,則小正方形的邊長為( ?。?/h2>
發(fā)布:2024/12/19 23:30:5組卷:1749引用:28難度:0.6 -
3.“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學(xué)的驕傲.如圖所示的“趙爽弦圖”是由四個全等的直角三角形和一個小正方形拼成的一個大正方形.設(shè)直角三角形較長直角邊長為a,較短直角邊長為b.若ab=8,大正方形的面積為25,則EF的長為( ?。?/h2>
發(fā)布:2024/12/9 18:0:2組卷:527引用:5難度:0.6
把好題分享給你的好友吧~~