已知曲線C上任意一點M滿足|MF1|-|MF2|=2,且F1(-2,0),F(xiàn)2(2,0).
(1)求C的方程;
(2)設A(-1,0),B(1,0),若過F2(2,0)的直線與C交于P,Q兩點,且直線AP與BQ交于點R.證明:點R在定直線上.
【考點】直線與拋物線的綜合.
【答案】(1);
(2)證明見解析.
x
2
-
y
2
3
=
1
(
x
>
0
)
(2)證明見解析.
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/7/13 8:0:9組卷:159引用:4難度:0.5
相似題
-
1.拋物線x2=4y的焦點為F,準線為l,A,B是拋物線上的兩個動點,且滿足AF⊥BF,P為線段AB的中點,設P在l上的射影為Q,則
的最大值是( )|PQ||AB|A. 23B. 33C. 22D. 32發(fā)布:2024/12/29 5:30:3組卷:454引用:7難度:0.5 -
2.如圖,設拋物線y2=2px的焦點為F,過x軸上一定點D(2,0)作斜率為2的直線l與拋物線相交于A,B兩點,與y軸交于點C,記△BCF的面積為S1,△ACF的面積為S2,若
,則拋物線的標準方程為( )S1S2=14A.y2=x B.y2=2x C.y2=4x D.y2=8x 發(fā)布:2024/12/17 0:0:2組卷:163引用:6難度:0.6 -
3.如圖,已知點P是拋物線C:y2=4x上位于第一象限的點,點A(-2,0),點M,N是y軸上的兩個動點(點M位于x軸上方),滿足PM⊥PN,AM⊥AN,線段PN分別交x軸正半軸、拋物線C于點D,Q,射線MP交x軸正半軸于點E.
(Ⅰ)若四邊形ANPM為矩形,求點P的坐標;
(Ⅱ)記△DOP,△DEQ的面積分別為S1,S2,求S1?S2的最大值.發(fā)布:2024/12/29 1:0:8組卷:91難度:0.4