已知雙曲線C:x2a2-y2b2=1(a>0,b>0)的右焦點(diǎn)為F(2,0),過(guò)點(diǎn)F的直線l與雙曲線C交于A,B兩點(diǎn).當(dāng)l⊥x軸時(shí),|AB|=233.
(1)若A點(diǎn)坐標(biāo)為(x1,y1),B點(diǎn)坐標(biāo)為(x2,y2),證明:x1y2-x2y1=2(y2-y1).
(2)在x軸上是否存在定點(diǎn)M,使得|AM|2+|BM|2-|AB|2為定值?若存在,求出定點(diǎn)M的坐標(biāo)及這個(gè)定值;若不存在,請(qǐng)說(shuō)明理由.
C
:
x
2
a
2
-
y
2
b
2
=
1
(
a
>
0
,
b
>
0
)
|
AB
|
=
2
3
3
【考點(diǎn)】雙曲線的弦及弦長(zhǎng).
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:86引用:1難度:0.4
相似題
-
1.已知雙曲線
的右焦點(diǎn)為F(c,0),直線l:x=c與雙曲線C交于A,B兩點(diǎn),與雙曲線C的漸近線交于D,E兩點(diǎn),若|DE|=2|AB|,則雙曲線C的離心率是 .C:x2a2-y2b2=1(a>0,b>0)發(fā)布:2024/7/23 8:0:8組卷:53引用:5難度:0.7 -
2.已知雙曲線C:
-x2a2=1(a>0,b>0)的離心率是2,直線l過(guò)雙曲線C的右焦點(diǎn)F,且與雙曲線C的右支交于A,B兩點(diǎn).當(dāng)直線l垂直于x軸時(shí),|AB|=6.y2b2
(1)求雙曲線C的標(biāo)準(zhǔn)方程.
(2)記雙曲線C的左、右頂點(diǎn)分別是D,E,直線AD與BE交于點(diǎn)P,試問(wèn)點(diǎn)P是否恒在某直線上?若是,求出該直線方程:若不是,請(qǐng)說(shuō)明理由.發(fā)布:2024/8/22 13:0:1組卷:23引用:1難度:0.4 -
3.過(guò)雙曲線
-x2a2=1(a>0)的右焦點(diǎn)F作直線l與雙曲線交于A,B兩點(diǎn),使得|AB|=6,若這樣的直線有且只有兩條,則實(shí)數(shù)a的取值范圍是( ?。?/h2>y23發(fā)布:2024/7/26 8:0:9組卷:72引用:3難度:0.5
把好題分享給你的好友吧~~