對于項數(shù)為m(m≥3)的有窮數(shù)列{an},若|a1-a2|≤|a2-a3|≤…≤|am-1-am|,則稱{am}為“P數(shù)列”.
(1)已知數(shù)列{an}、{bn}的通項公式分別為an=n2(1≤n≤4),bn=(12)n(1≤n≤5).分別判斷{an}、{bn}是否為“P數(shù)列”;(只需給出判斷)
(2)已知“P數(shù)列”a1,a2,…,a10的各項互不相同,且a1=20,a10=2.若a10,a9,…a1也是“P數(shù)列”,求有窮數(shù)列{an}的通項公式;
(3)已知“P數(shù)列”{an}是1,2,3,…,m的一個排列(即數(shù)列{an}中的項不計先后順序,分別取1,2,3,…,m),且|a1-a2|+|a2-a3|+…+|am-1-am|=m+1,求m的所有可能值.
a
n
=
n
2
(
1
≤
n
≤
4
)
b
n
=
(
1
2
)
n
(
1
≤
n
≤
5
)
【考點】數(shù)列的應(yīng)用.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/10 0:0:4組卷:68引用:1難度:0.1
相似題
-
1.已知{an},{bn}為兩非零有理數(shù)列(即對任意的i∈N*,ai,bi均為有理數(shù)),{dn}為一無理數(shù)列(即對任意的i∈N*,di為無理數(shù)).
(1)已知bn=-2an,并且(an+bndn-andn2)(1+dn2)=0對任意的n∈N*恒成立,試求{dn}的通項公式.
(2)若{dn3}為有理數(shù)列,試證明:對任意的n∈N*,(an+bndn-andn2)(1+dn2)=1恒成立的充要條件為.an=11+dn6bn=dn31+dn6
(3)已知sin2θ=(0<θ<2425),dn=π2,試計算bn.3tan(n?π2+(-1)nθ)發(fā)布:2024/12/22 8:0:1組卷:189引用:3難度:0.1 -
2.2023年是我國規(guī)劃的收官之年,2022年11月23日全國22個省份的832個國家級貧困縣全部脫貧摘帽.利用電商平臺,開啟數(shù)字化科技優(yōu)勢,帶動消費扶貧起到了重要作用.阿里研究院數(shù)據(jù)顯示,2013年全國淘寶村僅為20個,通過各地政府精準(zhǔn)扶貧,與電商平臺不斷合作創(chuàng)新,2014年、2015年、2016年全國淘寶村分別為212個、779個、1311個,從2017年起比上一年約增加1000個淘寶村,請你估計收官之年全國淘寶村的數(shù)量可能為( ?。?/h2>
發(fā)布:2024/12/18 13:30:2組卷:89引用:1難度:0.9 -
3.對于數(shù)列{an},把a(bǔ)1作為新數(shù)列{bn}的第一項,把a(bǔ)i或-ai(i=2,3,4,…,n)作為新數(shù)列{bn}的第i項,數(shù)列{bn}稱為數(shù)列{an}的一個生成數(shù)列.例如,數(shù)列1,2,3,4,5的一個生成數(shù)列是1,-2,-3,4,5.已知數(shù)列{bn}為數(shù)列{
}(n∈N*)的生成數(shù)列,Sn為數(shù)列{bn}的前n項和.12n
(Ⅰ)寫出S3的所有可能值;
(Ⅱ)若生成數(shù)列{bn}滿足S3n=(1-17),求數(shù)列{bn}的通項公式;18n
(Ⅲ)證明:對于給定的n∈N*,Sn的所有可能值組成的集合為{x|x=,k∈N*,k≤2n-1}.2k-12n發(fā)布:2024/12/28 23:30:2組卷:115引用:6難度:0.1
把好題分享給你的好友吧~~