設A,F(xiàn)分別為橢圓C:x2a2+y2b2=1(a>b>0)的右頂點和右焦點,B1,B2為橢圓C短軸的兩個端點,若點F恰為△AB1B2的重心,則橢圓C的離心率的值為1313.
x
2
a
2
y
2
b
2
1
3
1
3
【考點】橢圓的幾何特征.
【答案】
1
3
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:154引用:2難度:0.8
相似題
-
1.阿基米德(公元前287年-公元前212年)不僅是著名的物理學家,也是著名的數(shù)學家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓C的對稱軸為坐標軸,焦點在x軸上,且橢圓C的離心率為
,面積為8π,則橢圓C的方程為( )32A. x24+y2=1B. x216+y24=1C. x216+y212=1D. x24+y216=1發(fā)布:2024/12/29 12:0:2組卷:226引用:7難度:0.5 -
2.已知橢圓
=1(a>b>0)的一個焦點為F(2,0),橢圓上一點P到兩個焦點的距離之和為6,則該橢圓的方程為( ?。?/h2>x2a2+y2b2A. =1x236+y232B. =1y236+x232C. =1x29+y25D. =1y29+x25發(fā)布:2024/12/29 12:30:1組卷:12引用:2難度:0.7 -
3.已知橢圓C的兩焦點分別為
、F1(-22,0),長軸長為6.F2(22,0)
(1)求橢圓C的標準方程;
(2)求以橢圓的焦點為頂點,以橢圓的頂點為焦點的雙曲線的方程.發(fā)布:2024/12/29 11:30:2組卷:427引用:6難度:0.8
把好題分享給你的好友吧~~