華師版八年級(jí)下冊(cè)數(shù)學(xué)教材第121頁(yè)習(xí)題19.3第2小題及參考答案.
![]() 證明:設(shè)CE與DF交于點(diǎn)O, ∵四邊形ABCD是正方形, ∴∠B=∠DCF=90°,BC=CD. ∴∠BCE+∠DCE=90°, ∵CE⊥DF, ∴∠COD=90°. ∴∠CDF+∠DCE=90°. ∴∠CDF=∠BCE, ∴△CBE≌△DFC. ∴CE=DF. |
【問(wèn)題探究】
如圖1,在正方形ABCD中,點(diǎn)E、F、G、H分別在線(xiàn)段AB、BC、CD、DA上,且EG⊥FH.試猜想
EG
FH
【知識(shí)遷移】
如圖2,在矩形ABCD中,AB=m,BC=n,點(diǎn)E、F、G、H分別在線(xiàn)段AB、BC、CD、DA上,且EG⊥FH.則
EG
FH
n
m
n
m
【拓展應(yīng)用】
如圖3,在四邊形ABCD中,∠DAB=90°,∠ABC=60°,AB=BC,點(diǎn)E、F分別在線(xiàn)段AB、AD上,且CE⊥BF.求
CE
BF

【考點(diǎn)】四邊形綜合題.
【答案】
n
m
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:1652引用:3難度:0.1
相似題
-
1.閱讀下列材料:如圖(1),在四邊形ABCD中,若AB=AD,BC=CD,則把這樣的四邊形稱(chēng)之為箏形.
(1)寫(xiě)出箏形的兩個(gè)性質(zhì)(定義除外).
①;②.
(2)如圖(2),在平行四邊形ABCD中,點(diǎn)E、F分別在BC、CD上,且AE=AF,∠AEC=∠AFC.求證:四邊形AECF是箏形.
(3)如圖(3),在箏形ABCD中,AB=AD=26,BC=DC=25,AC=17,求箏形ABCD的面積.發(fā)布:2025/6/15 18:30:1組卷:1000引用:12難度:0.1 -
2.如圖所示,A(1,0)、點(diǎn)B在y軸上,將三角形OAB沿x軸負(fù)方向平移,平移后的圖形為三角形DEC,且點(diǎn)C的坐標(biāo)為(-3,2).
(1)直接寫(xiě)出點(diǎn)E的坐標(biāo);
(2)在四邊形ABCD中,點(diǎn)P從點(diǎn)B出發(fā),沿“BC→CD”移動(dòng).若點(diǎn)P的速度為每秒1個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為t秒,回答下列問(wèn)題:
①當(dāng)t=秒時(shí),點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);
②求點(diǎn)P在運(yùn)動(dòng)過(guò)程中的坐標(biāo),(用含t的式子表示,寫(xiě)出過(guò)程);
③當(dāng)3<t<5時(shí),設(shè)∠CBP=x°,∠PAD=y°,∠BPA=z°,用含x,y的式子表示z=.發(fā)布:2025/6/15 22:30:1組卷:563引用:3難度:0.4 -
3.(1)如圖1,點(diǎn)P是?ABCD內(nèi)的一點(diǎn),分別過(guò)點(diǎn)B、C、D作AP的垂線(xiàn)BE、CF、DH,垂足分別為E、F、H,猜想BE、CF、DH三者之間的關(guān)系,并證明;
(2)如圖2,若點(diǎn)P在?ABCD的外部,△APB的面積為18,△APD的面積為3,求△APC的面積;
(3)如圖3,在(2)條件下,AB=BC,∠APC=∠ABC=90°,設(shè)AP、BP分別于CD相交于點(diǎn)M、N,=(請(qǐng)直接寫(xiě)出結(jié)論).CPPM發(fā)布:2025/6/15 11:0:2組卷:51引用:2難度:0.3