試卷征集
加入會員
操作視頻

菁優(yōu)網尺規(guī)作圖三等分角是古希臘三大幾何難題之一,現(xiàn)今已證明該問題無解.但借助有刻度的直尺、其他曲線等,可將一個角三等分.古希臘數(shù)學家帕普斯曾提出以下作法:如圖,以∠ACB的頂點C為圓心作圓交角的兩邊于A,B兩點;取線段AB三等分點O,D;以B為焦點,A,D為頂點作雙曲線,與圓弧AB交于點E,連接CE,則∠ACB=3∠BCE.如圖中CE交AB于點P,
5
AP
=
6
PB
,則cos∠ACP=(  )

【答案】C
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/4/28 8:51:19組卷:55引用:2難度:0.5
相似題
  • 1.設雙曲線Γ:
    x
    2
    a
    2
    -
    y
    2
    b
    2
    =
    1
    a
    0
    ,
    b
    0
    的離心率為e,過Γ左焦點F1作傾斜角為θ的直線l依次交Γ的左右兩支于A,B,則有
    ecosθ
    =
    |
    B
    F
    1
    |
    +
    |
    A
    F
    1
    |
    |
    B
    F
    1
    |
    -
    |
    A
    F
    1
    |
    .若
    F
    1
    B
    =
    3
    F
    1
    A
    ,M為AB的中點,則直線OM斜率的最小值是( ?。?/h2>

    發(fā)布:2024/11/2 14:30:1組卷:73引用:3難度:0.4
  • 2.P為雙曲線x2-y2=1左支上任意一點,EF為圓C:(x-2)2+y2=4的任意一條直徑,則
    PE
    ?
    PF
    的最小值為( ?。?/h2>

    發(fā)布:2024/11/3 3:30:1組卷:601引用:3難度:0.5
  • 3.已知雙曲線Γ:
    x
    2
    a
    2
    -
    y
    2
    b
    2
    =
    1
    a
    ,
    b
    0
    的左、右焦點分別是F1,F(xiàn)2,點C是雙曲線Γ右支上異于頂點的點,點D在直線x=a上,且滿足
    CD
    =
    λ
    C
    F
    1
    |
    C
    F
    1
    |
    +
    C
    F
    2
    |
    C
    F
    2
    |
    ,λ∈R.若7
    OD
    -
    5
    DC
    +
    O
    F
    1
    =
    0
    ,則雙曲線Γ的離心率為(  )

    發(fā)布:2024/11/1 11:30:2組卷:127引用:3難度:0.5
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應用名稱:菁優(yōu)網 | 應用版本:4.8.2  |  隱私協(xié)議      第三方SDK     用戶服務條款廣播電視節(jié)目制作經營許可證出版物經營許可證網站地圖本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯(lián)系并提供證據(jù),本網將在三個工作日內改正