已知函數(shù)y=f(x)的表達(dá)式為f(x)=12ax2+(a+1)x+lnx(a∈R).
(1)若1是f(x)對的極值點(diǎn),求a的值.
(2)求f(x)的單調(diào)區(qū)間.
(3)若f(x)=12ax2+x有兩個實(shí)數(shù)解x1,x2(x1<x2),
(i)直接寫出a的取值范圍;
(ii)λ為正實(shí)數(shù),若對于符合題意的任意x1,x2,當(dāng)s=λ(x1+x2)時都有f'(s)<0,求λ的取值范圍.
f
(
x
)
=
1
2
a
x
2
+
(
a
+
1
)
x
+
lnx
(
a
∈
R
)
f
(
x
)
=
1
2
a
x
2
+
x
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:279引用:1難度:0.1
相似題
-
1.已知函數(shù)f(x)=x3-2kx2+x-3在R上不單調(diào),則k的取值范圍是 ;
發(fā)布:2024/12/29 13:0:1組卷:226引用:3難度:0.8 -
2.在R上可導(dǎo)的函數(shù)f(x)的圖象如圖示,f′(x)為函數(shù)f(x)的導(dǎo)數(shù),則關(guān)于x的不等式x?f′(x)<0的解集為( ?。?/h2>
發(fā)布:2024/12/29 13:0:1組卷:262引用:7難度:0.9 -
3.已知函數(shù)f(x)=ax2+x-xlnx(a∈R)
(Ⅰ)若函數(shù)f(x)在(0,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若函數(shù)f(x)有兩個極值點(diǎn)x1,x2(x1≠x2),證明:.x1?x2>e2發(fā)布:2024/12/29 13:30:1組卷:138引用:2難度:0.2
把好題分享給你的好友吧~~