試卷征集
加入會(huì)員
操作視頻

定義,我們習(xí)慣把過等腰三角形頂角的頂點(diǎn)引兩條射線,使兩條射線的夾角為等腰三角形頂角的一半,這樣的模型稱為半角模型.常見的圖形為正方形、正三角形、等腰直角三角形等,在解決“半角模型”的問題時(shí),旋轉(zhuǎn)是一種常用的方法.
已知,如圖1,四邊形ABCD是正方形,E,F(xiàn)分別在邊BC、CD上,且∠EAF=45°,
(1)在圖1中,連接EF,為了證明結(jié)論“EF=BE+DF”,小亮將△ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后解答了這個(gè)問題,請(qǐng)按小亮的思路寫出證明過程;
(2)如圖2,當(dāng)∠EAF繞點(diǎn)A旋轉(zhuǎn)到圖2位置時(shí),試探究EF與DF、BE之間有怎樣的數(shù)量關(guān)系?

【答案】(1)證明見解析;
(2)EF=DF-BE,證明見解析.
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/23 8:0:8組卷:698引用:4難度:0.4
相似題
  • 1.如圖,已知,在△ABC中,CA=CB,∠ACB=90°,E,F(xiàn)分別是CA,CB邊的三等分點(diǎn),將△ECF繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)α角(0°<α<90°),得到△MCN,連接AM,BN.
    (1)求證:AM=BN;
    (2)當(dāng)MA∥CN時(shí),試求旋轉(zhuǎn)角α的余弦值.

    發(fā)布:2025/6/25 6:30:1組卷:2475引用:59難度:0.5
  • 2.如圖,△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)80°得到△AEF,若∠B=100°,∠F=50°,則∠α的度數(shù)是
     

    發(fā)布:2025/7/1 13:0:6組卷:1099引用:19難度:0.7
  • 3.如圖,△ABC,△EFG均是邊長(zhǎng)為2的等邊三角形,點(diǎn)D是邊BC、EF的中點(diǎn),直線AG、FC相交于點(diǎn)M.當(dāng)△EFG繞點(diǎn)D旋轉(zhuǎn)時(shí),線段BM長(zhǎng)的最小值是( ?。?/h2>

    發(fā)布:2025/6/25 6:0:1組卷:5913引用:58難度:0.5
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正