試卷征集
加入會員
操作視頻

菁優(yōu)網(wǎng)如圖所示,取同離心率的兩個橢圓成軸對稱內(nèi)外嵌套得一個標志,為美觀考慮,要求圖中標記的①、②、③)三個區(qū)域面積彼此相等.(已知:橢圓面積為圓周率與長半軸、短半軸長度之積,即橢圓
x
2
a
2
+
y
2
b
2
=
1
(a>b>0)面積為S橢圓=πab)
(1)求橢圓的離心率的值;
(2)已知外橢圓長軸長為6,用直角角尺兩條直角邊內(nèi)邊緣與外橢圓相切,移動角尺繞外橢圓一周,得到由點M生成的軌跡將兩橢圓圍起來,整個標志完成.請你建立合適的坐標系,求出點M的軌跡方程.

【考點】橢圓的幾何特征;軌跡方程
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:185引用:2難度:0.4
相似題
  • 1.已知橢圓
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =1(a>b>0)的一個焦點為F(2,0),橢圓上一點P到兩個焦點的距離之和為6,則該橢圓的方程為( ?。?/h2>

    發(fā)布:2024/12/29 12:30:1組卷:12引用:2難度:0.7
  • 2.已知橢圓C的兩焦點分別為
    F
    1
    -
    2
    2
    ,
    0
    F
    2
    2
    2
    ,
    0
    ,長軸長為6.
    (1)求橢圓C的標準方程;
    (2)求以橢圓的焦點為頂點,以橢圓的頂點為焦點的雙曲線的方程.

    發(fā)布:2024/12/29 11:30:2組卷:430引用:6難度:0.8
  • 3.阿基米德(公元前287年-公元前212年)不僅是著名的物理學家,也是著名的數(shù)學家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓C的對稱軸為坐標軸,焦點在x軸上,且橢圓C的離心率為
    3
    2
    ,面積為8π,則橢圓C的方程為( ?。?/h2>

    發(fā)布:2024/12/29 12:0:2組卷:227引用:7難度:0.5
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正