試卷征集
加入會員
操作視頻

梅涅勞斯(Menelaus)是古希臘數(shù)學(xué)家,他首先證明了梅涅勞斯定理,定理的內(nèi)容是:如圖(1),如果一條直線與△ABC的三邊AB,BC,CA或它們的延長線交于F、D、E三點,那么一定有
AF
FB
?
BD
DC
?
CE
EA
=1.
下面是利用相似三角形的有關(guān)知識證明該定理的部分過程:
證明:如圖(2),過點A作AG∥BC,交DF的延長線于點G,則有
AF
FB
=
AG
BD
,
CE
EA
=
CD
AG

AF
FB
?
BD
DC
?
CE
EA
=
AG
BD
?
BD
DC
?
CD
AG
=1.
請用上述定理的證明方法解決以下問題:
(1)如圖(3),△ABC三邊CB,AB,AC的延長線分別交直線l于X,Y,Z三點,證明:
BX
XC
?
CZ
ZA
?
AY
YB
=1,請用上述定理的證明方法或結(jié)論解決以下問題:
(2)如圖(4),等邊△ABC的邊長為3,點D為BC的中點,點F在AB上,且BF=2AF,CF與AD交于點E,試求AE的長.
(3)如圖(5),△ABC的面積為4,F(xiàn)為AB中點,延長BC至D,使CD=BC,連接FD交AC于E,求四邊形BCEF的面積.
菁優(yōu)網(wǎng)

【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/1 11:0:2組卷:728引用:1難度:0.2
相似題
  • 1.設(shè)A1,B1,C1是直線l1上的任意三點,A2,B2,C2是另一條直線l2上的任意三點,A1B2和B1A2交于L,A1C2和A2C1交于M,B1C2和B2C1交于N.求證:L,M,N三點共線.

    發(fā)布:2024/4/20 14:35:0組卷:254引用:1難度:0.1
  • 菁優(yōu)網(wǎng)2.如圖,△ABC的垂心為H,AD⊥BC于D,點E在△ABC的外接圓上,且滿足
    BE
    CE
    =
    AB
    AC
    ,直線ED交外接圓于點M.求證:∠AMH=90°.

    發(fā)布:2024/9/11 2:0:8組卷:1056引用:1難度:0.1
  • 3.設(shè)P,Q,R分別是△ABC的BC,CA,AB上的點.若
    BP
    PC
    ?
    CQ
    QA
    ?
    AR
    RB
    =
    1
    ,證明:AP,BQ,CR交于一點.

    發(fā)布:2024/4/20 14:35:0組卷:407引用:1難度:0.5
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正