已知函數(shù)f(x)=(x-2)ex-a2x2+ax-1(a∈R).
(1)若a=2,求曲線y=f(x)在點(0,f(0))處的切線方程;
(2)討論f(x)的單調(diào)性.
f
(
x
)
=
(
x
-
2
)
e
x
-
a
2
x
2
+
ax
-
1
【答案】(1)x-y-3=0;
(2)當a≤0時,f(x)在(-∞,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增;
當0<a<e時,f(x)在(-∞,lna)上單調(diào)遞增,在(lna,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增;
當a=e時,f(x)在(-∞,+∞)上單調(diào)遞增;
當a>e時,f(x)在(-∞,1)上單調(diào)遞增,在(1,lna)上單調(diào)遞減,在(lna,+∞)上單調(diào)遞增.
(2)當a≤0時,f(x)在(-∞,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增;
當0<a<e時,f(x)在(-∞,lna)上單調(diào)遞增,在(lna,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增;
當a=e時,f(x)在(-∞,+∞)上單調(diào)遞增;
當a>e時,f(x)在(-∞,1)上單調(diào)遞增,在(1,lna)上單調(diào)遞減,在(lna,+∞)上單調(diào)遞增.
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/8/23 2:0:1組卷:227引用:13難度:0.5
相似題
-
1.已知函數(shù)f(x)=x3-2kx2+x-3在R上不單調(diào),則k的取值范圍是 ;
發(fā)布:2024/12/29 13:0:1組卷:237引用:3難度:0.8 -
2.在R上可導的函數(shù)f(x)的圖象如圖示,f′(x)為函數(shù)f(x)的導數(shù),則關于x的不等式x?f′(x)<0的解集為( ?。?/h2>
發(fā)布:2024/12/29 13:0:1組卷:265引用:7難度:0.9 -
3.已知函數(shù)f(x)=ax2+x-xlnx(a∈R)
(Ⅰ)若函數(shù)f(x)在(0,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍;
(Ⅱ)若函數(shù)f(x)有兩個極值點x1,x2(x1≠x2),證明:.x1?x2>e2發(fā)布:2024/12/29 13:30:1組卷:144引用:2難度:0.2