試卷征集
加入會員
操作視頻

如圖,已知AD是⊙O的直徑,B、C是AD兩側圓上的動點,且AB=AC,過點C作CF∥BD,交直徑AD于點F,連結CD,BF.
(1)求證:BE=CE;
(2)試判斷四邊形BFCD的形狀,并說明理由;
(3)若AD=10,OF=1,求BC的長.

【考點】圓的綜合題
【答案】(1)證明見解析;
(2)四邊形BFCD是菱形,理由見解析;
(3)2
21
或8.
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/9/7 11:0:11組卷:37引用:1難度:0.5
相似題
  • 1.在⊙O中,AB為直徑,點C為圓上一點,將劣弧沿弦AC翻折交AB于點D,連結CD.

    (1)如圖1,若點D與圓心O重合,AC=2,求⊙O的半徑r;
    (2)如圖2,若點D與圓心O不重合,∠BAC=20°,請求出∠DCA的度數(shù).
    (3)如圖2,如果AD=6,DB=2,那么AC的長為
    (直接寫出答案).

    發(fā)布:2025/6/14 9:0:1組卷:383引用:1難度:0.5
  • 2.【數(shù)學概念】
    我們把存在內切圓與外接圓的四邊形稱為雙圓四邊形.例如,如圖①,四邊形ABCD內接于⊙M,且每條邊均與⊙P相切,切點分別為E,F(xiàn),G,H,因此該四邊形是雙圓四邊形.

    【性質初探】
    (1)雙圓四邊形的對角的數(shù)量關系是
    ,依據(jù)是

    (2)直接寫出雙圓四邊形的邊的性質.(用文字表述)
    (3)在圖①中,連接GE,HF,求證GE⊥HF.
    【揭示關系】
    (4)根據(jù)雙圓四邊形與四邊形、平行四邊形、矩形、菱形、正方形的關系,在圖②中畫出雙圓四邊形的大致區(qū)域,并用陰影表示.
    【特例研究】
    (5)已知P,M分別是雙圓四邊形ABCD的內切圓和外接圓的圓心,若AB=1,∠BCD=60°,∠B=90°,則PM的長為

    發(fā)布:2025/6/14 7:0:1組卷:328引用:1難度:0.3
  • 3.已知:AB為⊙O的直徑,
    ?
    BC
    =
    ?
    AC
    ,D為弦AC上一動點(不與A、C重合).
    (1)如圖1,若BD平分∠CBA,連接OC交BD于點E.
    ①求證:CE=CD;
    ②若OE=2,求AD的長.
    (2)如圖2,若BD繞點D順時針旋轉90°得DF,連接AF.求證:AF為⊙O的切線.

    發(fā)布:2025/6/14 9:30:1組卷:343引用:2難度:0.3
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網(wǎng) | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內改正