設(shè)復(fù)平面上點(diǎn)對(duì)應(yīng)的復(fù)數(shù)z=x+yi(x∈R,y∈R)(i為虛數(shù)單位)滿足|z+2|+|z-2|=6,點(diǎn)Z的軌跡方程為曲線C1.雙曲線C2:x2-y2n=1與曲線C1有共同焦點(diǎn),傾斜角為π4的直線l與雙曲線C2的兩條漸近線的交點(diǎn)是A、B,OA?OB=2,O為坐標(biāo)原點(diǎn).
(1)求點(diǎn)Z的軌跡方程C1;
(2)求直線l的方程;
(3)設(shè)△PQR三個(gè)頂點(diǎn)在曲線C1上,求證:當(dāng)O是△PQR重心時(shí),△PQR的面積是定值.
-
y
2
n
=
1
π
4
OA
?
OB
【考點(diǎn)】軌跡方程.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:217引用:2難度:0.3
相似題
-
1.點(diǎn)P為△ABC所在平面內(nèi)的動(dòng)點(diǎn),滿足
=t(AP),t∈(0,+∞),則點(diǎn)P的軌跡通過△ABC的( ?。?/h2>AB|AB|cosB+AC|AC|cosC發(fā)布:2024/12/29 6:30:1組卷:100引用:3難度:0.7 -
2.已知兩個(gè)定點(diǎn)A(-2,0),B(1,0),如果動(dòng)點(diǎn)P滿足|PA|=2|PB|.
(1)求點(diǎn)P的軌跡方程并說明該軌跡是什么圖形;
(2)若直線l:y=kx+1分別與點(diǎn)P的軌跡和圓(x+2)2+(y-4)2=4都有公共點(diǎn),求實(shí)數(shù)k的取值范圍.發(fā)布:2024/12/29 10:30:1組卷:39引用:3難度:0.5 -
3.已知四棱錐P-ABCD的底面ABCD為正方形,PD⊥底面ABCD,且PD=AD=4,點(diǎn)E為BC的中點(diǎn).四棱錐P-ABCD的所有頂點(diǎn)都在同一個(gè)球面上,點(diǎn)M是該球面上的一動(dòng)點(diǎn),且PM⊥AE,則點(diǎn)M的軌跡的長度為( ?。?/h2>
發(fā)布:2024/12/29 8:0:12組卷:14引用:1難度:0.6
把好題分享給你的好友吧~~