如圖,線段AB為⊙O的直徑,點(diǎn)C在⊙O上,CD⊥AB,垂足為點(diǎn)D.點(diǎn)F在CD上,且CF=BF.BF的延長線交⊙O于點(diǎn)E.過點(diǎn)C作CM∥BE交AB的延長線于點(diǎn)M.
(1)猜想BC與EC的數(shù)量關(guān)系,并說明理由;
(2)求證:直線CM是⊙O的切線;
(3)若BE:AB=4:5,BM=4,求⊙O的半徑.
【考點(diǎn)】圓的綜合題.
【答案】(1)BC=EC,理由見詳解;
(2)見詳解;
(3)⊙O的半徑為6.
(2)見詳解;
(3)⊙O的半徑為6.
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:179引用:2難度:0.3
相似題
-
1.如圖,⊙O的半徑為5,弦BC=6,A為BC所對優(yōu)弧上一動(dòng)點(diǎn),△ABC的外角平分線AP交⊙O于點(diǎn)P,直線AP與直線BC交于點(diǎn)E.
(1)求證:P為優(yōu)弧BAC的中點(diǎn);
(2)連接PC,求PC的長度;
(3)求sin∠BAC的值;
(4)若△ABC為非銳角三角形,請直接寫出△ABC的面積的最大值.發(fā)布:2025/6/15 3:0:1組卷:97引用:1難度:0.1 -
2.如圖,⊙O為△ABC的外接圓,AC=BC,D為OC與AB的交點(diǎn),E為線段OC延長線上一點(diǎn),且∠EAC=∠ABC.
(1)求證:直線AE是⊙O的切線.
(2)若CD=6,AB=16,求⊙O的半徑;
(3)在(2)的基礎(chǔ)上,點(diǎn)F在⊙O上,且=?BC,△ACF的內(nèi)心點(diǎn)G在AB邊上,求BG的長.?BF發(fā)布:2025/6/14 23:0:1組卷:1104引用:7難度:0.1 -
3.請閱讀下面材料,并完成相應(yīng)的任務(wù);
阿基米德折弦定理
阿基米德(Archimedes,公元前287-公元前212年,古希臘)是有史以來最偉大的數(shù)學(xué)家之一,他與牛頓、高斯并稱為三大數(shù)學(xué)王子.
阿拉伯Al-Biruni(973年-1050年)的譯文中保存了阿基米德折弦定理的內(nèi)容,蘇聯(lián)在1964年根據(jù)Al-Biruni譯本出版了俄文版《阿基米德全集》,第一題就是阿基米德的折弦定理.
阿基米德折弦定理:如圖1,AB和BC是⊙O的兩條弦(即折線ABC是圓的一條折弦),BC>AB,M是的中點(diǎn),則從點(diǎn)M向BC所作垂線的垂足D是折弦ABC的中點(diǎn),即CD=AB+BD.?ABC
這個(gè)定理有很多證明方法,下面是運(yùn)用“垂線法”證明CD=AB+BD的部分證明過程.
證明:如圖2,過點(diǎn)M作MH⊥射線AB,垂足為點(diǎn)H,連接MA,MB,MC.
∵M(jìn)是的中點(diǎn),?ABC
∴MA=MC.
…
任務(wù):
(1)請按照上面的證明思路,寫出該證明的剩余部分;
(2)如圖3,已知等邊三角形ABC內(nèi)接于⊙O,D為上一點(diǎn),∠ABD=15°,CE⊥BD于點(diǎn)E,CE=2,連接AD,則△DAB的周長是 .?AC發(fā)布:2025/6/15 17:30:2組卷:757引用:4難度:0.1